Novel Internalizing Human Antibodies Targeting Brain Tumor Sphere Cells

  • Scott Bidlingmaier
  • Xiaodong Zhu
  • Yue Liu
  • Yang Su
  • Bin Liu
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 9)

Abstract

Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain tumor current treatments are hampered by resistance and recurrence. A subpopulation of GBM tumor cells can grow as spheres when cultured in serum-free medium and these sphere cells exhibit enhanced tumor-initiating ability and drug resistance. Human monoclonal antibodies targeting brain tumor sphere cells have been identified by phage antibody display technology and could be useful for the development of novel therapies that target subpopulations of GBM cells to combat recurrence and resistance to treatment.

Keywords

Glioblastoma Multiforme Human Monoclonal Antibody Sphere Cell Bulk Tumor Tumor Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23(9):1147–1157PubMedCrossRefGoogle Scholar
  2. An F, Drummond DC, Wilson S, Kirpotin DB, Nishimura S, Broaddus CV, Liu B (2008) Targeted drug delivery to mesothelioma cells using functionally selected internalizing human single chain antibodies. Mol Cancer Ther 7(3):569–578PubMedCrossRefGoogle Scholar
  3. Benítez JA, Domínguez-Monzón G, Segovia J (2008) Conventional and gene therapy strategies for the treatment of brain tumors. Curr Med Chem 15:729–742PubMedCrossRefGoogle Scholar
  4. Bidlingmaier S, Zhu X, Liu B (2008) The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med 86:1025–1032PubMedCrossRefGoogle Scholar
  5. Bidlingmaier S, He J, Wang Y, An F, Feng J, Gao D, Nishimura S, Franc B, Broaddus CV, Liu B (2009) Identification of the antigen bound by a tumor-targeting phage antibody using yeast surface human proteome display: MCAM is a mesothelioma-associated cell surface antigen. Cancer Res 69(4):1570–1577PubMedCrossRefGoogle Scholar
  6. Chang JE, Khuntia D, Robins HI, Mehta MP (2007) Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol 5(894–902):907–915Google Scholar
  7. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284PubMedCrossRefGoogle Scholar
  8. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26:2839–2845PubMedCrossRefGoogle Scholar
  9. He J, Wang Y, Feng J, Zhu J, Lan X, Iyer AK, Zhang N, Seo Y, VanBrocklin HF, Liu B (2010) Targeting prostate cancer cells in vivo using a rapidly internalizing novel human single chain antibody fragment. J Nucl Med 51(3):417–432CrossRefGoogle Scholar
  10. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, Eaves C (2007) Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 21:926–935PubMedGoogle Scholar
  11. Krex D, Klink B, Hartmann C, von DA, Pietsch T, Simon M, Sabel M, Steinbach JP, Heese O, Reifenberger G, Weller M, Schackert G (2007) Long-term survival with glioblastoma multiforme. Brain 130:2596–2606PubMedCrossRefGoogle Scholar
  12. Laks DR, Masterman-Smith M, Visnyei K, Angenieux B, Orozco NM, Foran I, Yong WH, Vinters HV, Liau LM, Lazareff JA, Mischel PS, Cloughesy TF, Horvath S, Kornblum HI (2009) Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells 27:980–987PubMedCrossRefGoogle Scholar
  13. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403PubMedCrossRefGoogle Scholar
  14. Liu B, Conrad F, Cooperberg MR, Kirpotin DB, Marks JD (2004) Mapping tumor epitope space by direct selection of single chain Fv antibody libraries on prostate cancer cells. Cancer Res 64(2):704–710PubMedCrossRefGoogle Scholar
  15. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9(10):767–774PubMedCrossRefGoogle Scholar
  16. Nicholas MK (2007) Glioblastoma multiforme: evidence-based approach to therapy. Expert Rev Anticancer Ther 7:S23–S27PubMedCrossRefGoogle Scholar
  17. Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, Stassi G, Martini M, Maira G, Larocca LM, De MR (2008) Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res 14:8205–8212PubMedCrossRefGoogle Scholar
  18. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902PubMedCrossRefGoogle Scholar
  19. Reardon DA, Desjardins A, Rich JN, Vredenburgh JJ (2008) The emerging role of anti-angiogenic therapy for malignant glioma. Curr Treat Options Oncol 9:1–22PubMedCrossRefGoogle Scholar
  20. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  21. Roth A, Conrad F, Hayes M, Drummond DC, Kirpotin DB, Benz CC, Marks JD, Liu B (2007) Anti-CD166 single chain antibody-mediated intracellular delivery of liposomal drugs to prostate cancer cells. Mol Cancer Ther 6(10):2737–2746PubMedCrossRefGoogle Scholar
  22. Ruan W, Sassoon A, An F, Simko JP, Liu B (2006) Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol Cell Proteomics 5(12):2364–2373PubMedCrossRefGoogle Scholar
  23. Sheets MD, Amersdorfer P, Finnern R, Sargent P, Lindquist E, Schier R, Hemingsen G, Wong C, Gerhart JC, Marks JD (1988) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci USA 95(11):6157–6162CrossRefGoogle Scholar
  24. Sims AH, Howell A, Howell SJ, Clarke RB (2007) Origins of breast cancer subtypes and therapeutic implications. Nat Clin Pract Oncol 4:516–525PubMedCrossRefGoogle Scholar
  25. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  26. Singh SK, Clarke ID, Hide T, Dirks PB (2004a) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273PubMedCrossRefGoogle Scholar
  27. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004b) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  28. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400PubMedCrossRefGoogle Scholar
  29. Zhu X, Bidlingmaier S, Hashizume R, James D, Berger MS, Liu B (2010) Identification of internalizing human single-chain antibodies targeting brain tumor sphere cells. Mol Cancer Ther 9:2131–2141PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Scott Bidlingmaier
    • 1
  • Xiaodong Zhu
    • 1
  • Yue Liu
    • 1
  • Yang Su
    • 1
  • Bin Liu
    • 1
  1. 1.Department of AnesthesiaUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations