Skip to main content

Hematopoietic Stem Cell Function and Skeletal Formation: Positive Role of Hemp Gene

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 9

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 9))

  • 1336 Accesses

Abstract

Hematopoietic stem cells (HSCs) have a capacity to undergo self-renewal and differentiation into several distinct cell lineages, which maintain blood production and provide mature blood cells throughout life. To clarify molecular mechanisms governing HSC development, we performed a genome-wide gene expression analysis of fetal liver (FL) HSC cDNA library, and identified a novel gene, hemp (h ematopoietic e xpressed m ammalian p olycomb), that encodes a protein with a zinc-finger domain and four malignant brain tumor (mbt) repeats. To elucidate its biological role(s), we generated hemp-deficient mice and found that Hemp plays pivotal roles in HSC function and skeletal formation. Mononuclear cell number in hemp −/− FLs was markedly reduced, and hemp −/− FL HSCs exhibited significant defects in colony-forming and competitive repopulation assays. In addition, hemp −/− embryos exhibited various skeletal malformations, such as a fusion of cervical vertebrae. Since osteoblasts and HSCs coexist in the bone marrow niche and physically and functionally interact with each other, it is suggested that Hemp-mediated signalling positively and coordinately regulates normal development of these types of cells. In addition, skeletal abnormalities detected in hemp −/− mice closely resemble to those observed in human Klippel-Feil anomaly, suggesting that Hemp might be involved in the pathogenesis of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arai S, Miyazaki T (2005) Impaired maturation of myeloid progenitors in mice lacking novel Polycomb group protein MBT-1. EMBO J 24:1863–1873

    Article  PubMed  CAS  Google Scholar 

  • Baga N, Chusid EL, Miller A (1969) Pulmonary disability in the Klippel-Feil syndrome. A study of two siblings. Clin Orthop Relat Res 67:105–110

    Article  PubMed  CAS  Google Scholar 

  • Berger J, Kurahashi H, Takihara Y, Shimada K, Brock HW, Randazzo F (1999) The human homolog of Sex comb on midleg (SCMH1) maps to chromosome 1p34. Gene 237:185–191

    Article  PubMed  CAS  Google Scholar 

  • Bonasio R, Lecona E, Reinberg D (2010) MBT domain proteins in development and disease. Semin Cell Dev Biol 21:221–230

    Article  PubMed  CAS  Google Scholar 

  • Bornemann D, Miller E, Simon J (1996) The Drosophila Polycomb group gene Sex comb on midleg (Scm) encodes a zinc finger protein with similarity to polyhomeotic protein. Development 122:1621–1630

    PubMed  CAS  Google Scholar 

  • Charles JE, Robert PE, Anthony WB (2008) Inborn errors of development, Secondth edn. Oxford University Press, Oxford

    Google Scholar 

  • Deneault E, Cellot S, Faubert A, Laverdure JP, Fréchette M, Chagraoui J, Mayotte N, Sauvageau M, Ting SB, Sauvageau G (2009) A functional screen to identify novel effectors of hematopoietic stem cell activity. Cell 137:369–379

    Article  PubMed  CAS  Google Scholar 

  • Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136

    Article  PubMed  CAS  Google Scholar 

  • Eryilmaz J, Pan P, Amaya MF, Allali-Hassani A, Dong A, Adams-Cioaba MA, Mackenzie F, Vedadi M, Min J (2009) Structural studies of a four-MBT repeat protein MBTD1. PLoS One 4:e7274

    Article  PubMed  Google Scholar 

  • Fukushima Y, Ohashi H, Wakui K, Nishimoto H, Sato M, Aihara T (1995) De novo apparently balanced reciprocal translocation between 5q11.2 and 17q23 associated with Klippel-Feil anomaly and type A1 brachydactyly. Am J Med Genet 57:447–449

    Article  PubMed  CAS  Google Scholar 

  • Goto M, Nishimura G, Nagai T, Yamazawa K, Ogata T (2006) Familial Klippel-Feil anomaly and t(5;8)(q35.1;p21.1) translocation. Am J Med Genet A 140:1013–1015

    PubMed  Google Scholar 

  • Greenspan A, Cohen J, Szabo RM (1991) Klippel-Feil syndrome. An unusual association with Sprengel deformity, omovertebral bone, and other skeletal, hematologic, and respiratory disorders. A case report. Bull Hosp Jt Dis Orthop Inst 51:54–62

    PubMed  CAS  Google Scholar 

  • Honda H, Takubo K, Oda H, Kosaki K, Tazaki T, Yamasaki N, Miyazaki K, Moore KA, Honda Z, Suda T, Lemischka IR (2011) Hemp, an mbt domain-containing protein, plays essential roles in hematopoietic stem cell function and skeletal formation. Proc Natl Acad Sci USA 108:2468–2473

    Article  PubMed  CAS  Google Scholar 

  • Klimo P Jr, Rao G, Brockmeyer D (2007) Congenital anomalies of the cervical spine. Neurosurg Clin N Am 18:463–478

    Article  PubMed  Google Scholar 

  • Koga H, Matsui S, Hirota T, Takebayashi S, Okumura K, Saya H (1999) A human homolog of Drosophila lethal(3)malignant brain tumor (l(3)mbt) protein associates with condensed mitotic chromosomes. Oncogene 18:3799–3809

    Article  PubMed  CAS  Google Scholar 

  • Lazarus KH, McCurdy FA (1984) Multiple congenital anomalies in a patient with- Diamond-Blackfan syndrome. Clin Pediatr (Phila) 23:520–521

    Article  CAS  Google Scholar 

  • Markus J, Feikova S, Sramko M, Wolff L, Bies J (2003) Proliferation-linked expression of the novel murine gene m4mbt encoding a nuclear zinc finger protein with four mbt domains. Gene 319:117–126

    Article  PubMed  CAS  Google Scholar 

  • McGaughran J (2003) Klippel-Feil anomaly in Fanconi anemia. Clin Dysmorphol 12:197

    PubMed  Google Scholar 

  • Montini E, Buchner G, Spalluto C, Andolfi G, Caruso A, den Dunnen JT, Trump D, Rocchi M, Ballabio A, Franco B (1999) Identification of SCML2, a second human gene homologous to the Drosophila sex comb on midleg (Scm): a new gene cluster on Xp22. Genomics 58:65–72

    Article  PubMed  CAS  Google Scholar 

  • Peterson AJ, Kyba M, Bornemann D, Morgan K, Brock HW, Simon J (1997) A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions. Mol Cell Biol 17:6683–6692

    PubMed  CAS  Google Scholar 

  • Phillips RL, Ernst RE, Brunk B, Ivanova N, Mahan MA, Deanehan JK, Moore KA, Overton GC, Lemischka IR (2000) The genetic program of hematopoietic stem cells. Science 288:1635–1640

    Article  PubMed  CAS  Google Scholar 

  • Rooryck C, Burgelin I, Stef M, Taine L, Thambo JB, Lacombe D, Arveiler B (2008) A 580 kb microdeletion in 17q21.32 associated with mental retardation, microcephaly, cleft palate, and cardiac malformation. Eur J Med Genet 51:74–80

    Article  PubMed  Google Scholar 

  • Smoker WR, Khanna G (2008) Imaging the craniocervical junction. Childs Nerv Syst 24:1123–1145

    Article  PubMed  Google Scholar 

  • Usui H, Ichikawa T, Kobayashi K, Kumanishi T (2000) Cloning of a novel murine gene Sfmbt, Scm-related gene containing four mbt domains, structurally belonging to the Polycomb group of genes. Gene 248:127–135

    Article  PubMed  CAS  Google Scholar 

  • van Lohuizen M (1998) Functional analysis of mouse Polycomb group genes. Cell Mol Life Sci 54:71–79

    Article  PubMed  Google Scholar 

  • Wismar J (2001) Molecular characterization of h-l(3)mbt-like: a new member of the human mbt family. FEBS Lett 507:119–121

    Article  PubMed  CAS  Google Scholar 

  • Wismar J, Loffler T, Habtemichael N, Vef O, Geissen M, Zirwes R, Altmeyer W, Sass H, Gateff E (1995) The Drosophila melanogaster tumor suppressor gene lethal(3)malignant brain tumor encodes a proline-rich protein with a novel zinc finger. Mech Dev 53:141–154

    Article  PubMed  CAS  Google Scholar 

  • Yue Y, Farcas R, Thiel G, Bommer C, Grossmann B, Galetzka D, Kelbova C, Küpferling P, Daser A, Zechner U, Haaf T (2007) De novo t(12;17)(p13.3;q21.3) translocation with a breakpoint near the 5′ end of the HOXB gene cluster in a patient with developmental delay and skeletal malformations. Eur J Hum Genet 15:570–577

    Article  PubMed  CAS  Google Scholar 

  • Zahir FR, Langlois S, Gall K, Eydoux P, Marra MA, Friedman JM (2009) A novel de novo 1.1 Mb duplication of 17q21.33 associated with cognitive impairment and other anomalies. Am J Med Genet 149(A):1257–1262

    Article  Google Scholar 

  • Zon LI (2008) Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 453:306–313

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Honda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Honda, H. (2013). Hematopoietic Stem Cell Function and Skeletal Formation: Positive Role of Hemp Gene. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 9. Stem Cells and Cancer Stem Cells, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5645-8_15

Download citation

Publish with us

Policies and ethics