Maintenance of Pluripotency in Mouse Embryonic Stem Cells with MicroRNAs

  • George M. Yousef
  • Zsuzsanna Lichner
  • Elen Gócza
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 9)

Abstract

miRNAs compose a class of short single-stranded RNA molecules that function by regulating the expression of their target genes. Recent evidence has shown that miRNAs play a critical role in the maintenance of stem cell pluripotency and differentiation. In this chapter, we will provide an overview about the biogenesis of the miRNAs and the principal of their mechanism of action. We will highlight the most common theories about the way they establish simple regulatory networks with their targets. We will also discuss, in more details, the role of ES cell-specific miRNAs in the maintenance of pluripotency of the mouse embryonic stem cells (ES cells), and their connection to epigenetic silencing and regulation of cell cycle.

Keywords

Cancer Stem Cell Pluripotency Factor Cell Cycle Phase Distribution Oct4 Promoter Pluripotency Maintenance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco MA (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15:998PubMedCrossRefGoogle Scholar
  2. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217PubMedCrossRefGoogle Scholar
  3. Buffa FM, Camps C, Winchester L, Snell CE, Gee HE, Sheldon H, Taylor M, Harris AL, Ragoussis J (2011) microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res 71:5635–5645PubMedCrossRefGoogle Scholar
  4. Calabrese JM, Seila AC, Yeo GW, Sharp PA (2007) RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proc Natl Acad Sci USA 104:18097–18102PubMedCrossRefGoogle Scholar
  5. Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, Beer MA, Thomas-Tikhonenko A, Mendell JT (2009) Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci USA 106:3384–3389PubMedCrossRefGoogle Scholar
  6. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233PubMedCrossRefGoogle Scholar
  7. Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science 331:550–553PubMedCrossRefGoogle Scholar
  8. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10:116–125PubMedCrossRefGoogle Scholar
  9. Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, White RJ (2005) c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7:311–318PubMedCrossRefGoogle Scholar
  10. Hanina SA, Mifsud W, Down TA, Hayashi K, O’Carroll D, Lao K, Miska EA, Surani MA (2010) Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells. PLoS Genet 6:e1001163PubMedCrossRefGoogle Scholar
  11. Houbaviy HB, Dennis L, Jaenisch R, Sharp PA (2005) Characterization of a highly variable eutherian microRNA gene. RNA 11:1245–1257PubMedCrossRefGoogle Scholar
  12. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263PubMedCrossRefGoogle Scholar
  13. Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7:36–41PubMedCrossRefGoogle Scholar
  14. Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27:459–461PubMedCrossRefGoogle Scholar
  15. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501PubMedCrossRefGoogle Scholar
  16. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450PubMedCrossRefGoogle Scholar
  17. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858PubMedCrossRefGoogle Scholar
  18. Le MT, Shyh-Chang N, Khaw SL, Chin L, Teh C, Tay J, O’Day E, Korzh V, Yang H, Lal A, Lieberman J, Lodish HF, Lim B (2011) Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet 7:e1002242PubMedCrossRefGoogle Scholar
  19. Leung AK, Young AG, Bhutkar A, Zheng GX, Bosson AD, Nielsen CB, Sharp PA (2011) Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol 18:237–244PubMedCrossRefGoogle Scholar
  20. Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN (2009) Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28:3157–3170PubMedCrossRefGoogle Scholar
  21. Ma YL, Zhang P, Wang F, Moyer MP, Yang JJ, Liu ZH, Peng JY, Chen HQ, Zhou YK, Liu WJ, Qin HL (2011) Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b. J Cell Mol Med 15:1941–1954PubMedCrossRefGoogle Scholar
  22. Maniataki E, Mourelatos Z (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 19:2979–2990PubMedCrossRefGoogle Scholar
  23. Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463:621–626PubMedCrossRefGoogle Scholar
  24. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102:12135–12140PubMedCrossRefGoogle Scholar
  25. Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12:136–149PubMedCrossRefGoogle Scholar
  26. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15:259–267PubMedCrossRefGoogle Scholar
  27. Tarantino C, Paolella G, Cozzuto L, Minopoli G, Pastore L, Parisi S, Russo T (2010) miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. FASEB J 24:3255–3263PubMedCrossRefGoogle Scholar
  28. Tata PR, Tata NR, Kuhl M, Sirbu IO (2011) Identification of a novel epigenetic regulatory region within the pluripotency associated microRNA cluster, EEmiRC. Nucleic Acids Res 39:3574–3581PubMedCrossRefGoogle Scholar
  29. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39:380–385PubMedCrossRefGoogle Scholar
  30. Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40:1478–1483PubMedCrossRefGoogle Scholar
  31. Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Lett 579:5911–5922PubMedCrossRefGoogle Scholar
  32. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234PubMedCrossRefGoogle Scholar
  33. Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, Garcia-Barrio MT, Zhang J, Chen YE (2011) MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev 20:205–210PubMedCrossRefGoogle Scholar
  34. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • George M. Yousef
    • 1
  • Zsuzsanna Lichner
    • 1
  • Elen Gócza
    • 1
  1. 1.Department of Animal Biotechnology, Agricultural Biotechnology Center (ABC)Applied Embryology and Stem Cell Research GroupGödöllőHungary

Personalised recommendations