Skip to main content

Cryopreservation of Hematopoietic Stem Cells from Umbilical Cord Blood for Transplantation

  • Chapter
  • First Online:
Book cover Stem Cells and Cancer Stem Cells, Volume 9

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 9))

Abstract

Umbilical cord blood (UCB) has become an alternative to bone marrow and peripheral blood as a source of hematopoietic progenitors (HSC) for transplantation. Since the first cord blood transplantation was performed in Paris in 1988, knowledge of biologic characteristics of UCB has greatly improved. UCB banks have greatly facilitated transplantation activity worldwide. The main objective of UCB banks is to select, cryopreserve and store high quality UCB units. Because UCB transplantation may be lifesaving and a particular UCB unit may be the only potential source of HSC for a patient hematopoietic reconstitution, quality of UCB stored in a bank must be strictly assured. Volume reduction and cryopreservation are the standard method for the processing and storage of HSC from UCB intended for transplantation. The main risk in cell cryopreservation is the loss of cell viability. This aspect is especially important for UCB that contains a significant lower HSC content as compared to bone marrow or peripheral blood. The formation and growth of ice crystals and the consequences of osmotic stress on cell membranes can lead to irreversible cell damage. Thus, efforts to avoid it must be implemented in the different phases of cell processing. Dimethyl sulfoxide is the most used cryoprotector for maintaining progenitor cell viability for a long period. In this chapter cryopreservation methodology for UCB banking is exhaustively explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen ED, Weatherbee L, Spencer HH, Lindenauer SM, Permoad PA (1976) Large unit red cell cryopreservation with hydroxyethyl starch. Cryobiology 13:500–506

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer H, Douglas G, Hangcoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of ­transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 86:3828–3832

    Article  PubMed  CAS  Google Scholar 

  • Broxmeyer HE, Lee MR, Hangoc G, Cooper S, Prasain N, Kim YJ, Mallett C, Ye Z, Witting S, Cornetta K, Cheng L, Yoder MC (2011) Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood 117:4773–4777

    Article  PubMed  CAS  Google Scholar 

  • Brunstein CG (2011) Umbilical cord blood transplantation for the treatment of hematologic malignancies. Cancer Control 18:222–236

    PubMed  Google Scholar 

  • Cox MA, Kastrup J, Hrubiško M (2012) Historical perspectives and the future of adverse reactions associated with haemopoietic stem cells cryopreserved with dimethyl sulfoxide. Cell Tissue Bank 13:203–215

    Google Scholar 

  • Galmés A, Besalduch J, Bargay J, Novo A, Morey M, Guerra JM, Duran MA (1999) Long-term storage at -80 degrees C of hematopoietic progenitor cells with 5-percent dimethyl sulfoxide as the sole cryoprotectant. Transfusion 39:70–73

    Article  PubMed  Google Scholar 

  • Galmes A, Gutiérrez A, Sampol A, Canaro M, Morey M, Iglesias J, Matamoros N, Duran MA, Novo A, Bea MD, Galán P, Balansat J, Martínez J, Bargay J, Besalduch J (2007) Long-term hematological reconstitution and clinical evaluation of autologous peripheral blood stem cell transplantation after cryopreservation of cells with 5% and 10% dimethylsulfoxide at -80 degrees C in a mechanical freezer. Haematologica 92:986–989

    Article  PubMed  Google Scholar 

  • Gluckman E, Borxmeyer HE, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P, Cooper S, English D, Kurtzberg J, Bard J, Boyse EA (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 32:1174–1178

    Article  Google Scholar 

  • Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 38:107–123

    Article  PubMed  Google Scholar 

  • Hunt CJ, Armitage SE, Pegg DE (2003a) Cryopreservation of umbilical cord blood: 1. Osmotically inactive volume, hydraulic conductivity and permeability of CD34(+) cells to dimethyl sulphoxide. Cryobiology 46:61–75

    Article  PubMed  CAS  Google Scholar 

  • Hunt CJ, Armitage SE, Pegg DE (2003b) Cryopreservation of umbilical cord blood: 2. Tolerance of CD34(+) cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology 46:76–87

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Minegishi M, Fushimi J, Takahashi H, Kudo Y, Suzuki A, Narita A, Sato Y, Akagi K, Wada Y, Saito A, Kikuchi M, Okamura K, Kaku M, Tsuchiya S (2003) A simple controlled-rate freezing method without a rate-controlled programmed freezer provides optimal conditions for both large-scale and small-scale cryopreservation of umbilical cord blood cells. Transfusion 43:1303–1308

    Article  PubMed  Google Scholar 

  • Kurata H, Takakuwa K, Tanaka K (1994) Vitrification of hematopoietic progenitor cells obtained from human cord blood. Bone Marrow Transplant 14:261–263

    PubMed  CAS  Google Scholar 

  • Law P, Alsop P, Dooley DC, Meryman HT (1983) Studies of cell separation: a comparison of the osmotic response of human lymphocytes and ­granulocyte-monocyte progenitor cells. Cryobiology 20:644–651

    Article  PubMed  CAS  Google Scholar 

  • Lovelock JE, Bishop MW (1959) Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183:1394–1395

    Article  PubMed  CAS  Google Scholar 

  • Mascotti K, McCullough J, Burger SR (2000) HSC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion 40:693–696

    Article  PubMed  CAS  Google Scholar 

  • Mazur P (1970) Cryobiology: the freezing of biological systems. Science 168:939–949

    Article  PubMed  CAS  Google Scholar 

  • Mazur P, Seki S (2011) Survival of mouse oocytes after being cooled in a vitrification solution to -196  ºC at 95  ºC to 70,000  ºC/min and warmed at 610  ºC to 118,000  ºC/min: a new paradigm for cryopreservation by vitrification. Cryobiology 62:1–7

    Article  PubMed  CAS  Google Scholar 

  • McCullough J, Haley R, Clay M, Hubel A, Lindgren B, Moroff G (2010) Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer. Transfusion 50:808–819

    Article  PubMed  Google Scholar 

  • Meryman HT (2007) Cryopreservation of living cells: principles and practice. Transfusion 47:935–945

    Article  PubMed  CAS  Google Scholar 

  • Mirabet V, Alvarez M, Solves P, Ocete D, Gimeno C (2012) Use of liquid nitrogen during storage in a cell and tissue bank: contamination risk and effect on the detectability of potential viral contaminants. Cryobiology 64:121–123

    Article  PubMed  CAS  Google Scholar 

  • Querol S, Mufti GJ, Marsch SGE, Pagliuca A, Little A-M, Shaw BE, Jeffery R, Garcia J, Goldman JM, Madrigal JA (2009) Cord blood stem cells for hematopoietic stem cell transplantation in the UK: how big should the bank be? Haematologica 94:536–541

    Article  PubMed  Google Scholar 

  • Regan DM, Wofford JD, Wall DA (2010) Comparison of cord blood thawing methods on cell recovery, potency and infusion. Transfusion 50:2670–2675

    Article  PubMed  Google Scholar 

  • Rodrigues JP, Paraguassú-Braga FH, Carvalho L, Abdelhay E, Bouzas LF, Porto LC (2008) Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56:144–151

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez L, Azqueta C, Azzalin S, García J, Querol S (2004) Washing of cord blood grafts after thawing: high cell recovery using an automated and closed system. Vox Sang 87:165–172

    Article  PubMed  Google Scholar 

  • Rowley SD, Anderson GL (1993) Effect of DMSO exposure without cryopreservation on hematopoietic progenitor cells. Bone Marrow Transplant 11:389–393

    PubMed  CAS  Google Scholar 

  • Rubinstein P, Dobrila L, Rosenfield RE, Adamson JW, Migliaccio G, Migliaccio AR, Taylor PE, Stevens CE (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92:10119–10122

    Article  PubMed  CAS  Google Scholar 

  • Shlebak AA, Marley SB, Roberts IA, Davidson RJ, Goldman JM, Gordon MY (1999) Optimal timing for processing and cryopreservation of umbilical cord haematopoietic stem cells for clinical transplantation. Bone Marrow Transplant 23:131–136

    Article  PubMed  CAS  Google Scholar 

  • Solves P, Mirabet V, Planelles D, Carbonell-Uberos F, Roig R (2008) Influence of volume reduction and ­cryopreservation methodologies on quality of thawed umbilical cord blood units for transplantation. Cryobiology 56:152–158

    Article  PubMed  CAS  Google Scholar 

  • Solves P, Mirabet V, Roig R (2010) Volume reduction in routine cord blood banking. Curr Stem Cell Res Ther 5:362–366

    Article  PubMed  CAS  Google Scholar 

  • Son JH, Heo YJ, Park MY, Kim HH, Lee KS (2010) Optimization of cryopreservation condition for hematopoietic stem cells from umbilical cord blood. Cryobiology 60:287–292

    Article  PubMed  CAS  Google Scholar 

  • Tedder RS, Zuckerman MA, Goldstone AH, Hawkins AE, Fielding A, Briggs EM, Irwin D, Blair S, Gorman AM, Patterson KG, Linch DC, Heptonstall J, Brink NS (1995) Hepatitis B transmission from contaminated cryopreservation tank. Lancet 346:137–140

    Article  PubMed  CAS  Google Scholar 

  • Windrum P, Morris TC, Drake MB, Niederwieser D, Ruutu T, EBMT Chronic Leukaemia Working Party Complications Subcommittee (2005) Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transplant 36:601–603

    Article  PubMed  CAS  Google Scholar 

  • Woods EJ, Liu J, Derrow CW, Smith FO, Williams DA, Critser JK (2000) Osmometric and permeability characteristics of human placental/umbilical cord blood CD34+ cells and their application to cryopreservation. J Hematother Stem Cell Res 9:161–173

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Mirabet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mirabet, V., Solves, P. (2013). Cryopreservation of Hematopoietic Stem Cells from Umbilical Cord Blood for Transplantation. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 9. Stem Cells and Cancer Stem Cells, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5645-8_1

Download citation

Publish with us

Policies and ethics