Skip to main content

Soil Threats

  • Chapter
  • First Online:

Part of the book series: World Soils Book Series ((WSBS))

Abstract

Over the past decades Italians—as well as other European inhabitants—have loaded their soilscapes more intensely and quicker than ever before. This anthropic pressure has such a strong impact on the environment that it sets off degradation processes in soils endangering them in various ways. In particular, (i) huge areas of the Italian landscape are exposed to soil erosion that still remain a concern because of the scarce adoption of soil conservation practices; (ii) soil consumption is much more evident in the main metropolitan areas and in the coastal areas and recently boosted also by the spread of photovoltaic ground-mounted installations that are preferentially established in flat areas, regardless of any aspect of soil quality; (iii) soil pollution/contamination is mainly due to industrial and urban settlements and concerns almost 1 % of the national area; (iv) soil salinization/alkalization is mainly due to irrigation with saline waters and is particularly diffused in the plains and along the coastal areas; (v) Italian soils are generally poor in organic matter, and its decline is mainly due to changes in land use and in soil managements; (vi) finally, it is to mention the soil diversity loss, a new soil threat that is mainly linked to large-scale farming in growing high remunerative crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Not considering the environmental and socio-economical problems that lead to the decline of the Roman Empire (see Sect. 8.1).

  2. 2.

    adjRNa: adjusted sodium adsorption ratio (Ayers and Westcot 1994).

References

  • Adamo P, Zampella M, Gianfreda L, Renella G, Rutigliano FA, Terribile F (2006) Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part I. Trace element speciation in relation to soil properties. Environ Pollut 144(1):308–316

    CAS  Google Scholar 

  • Amore E, Modica C, Nearing MA, Santoro VC (2004) Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins. J Hydrol 293(1–4):100–114

    Google Scholar 

  • Amundson R (2006) Soils in the anthropocene. 1.2 A spatial, societal and environmental aspects of pedodiversity—oral. The 18th World Congress of Soil Science. 9–15 July 2006, Philadelphia

    Google Scholar 

  • APAT (2005a) Annuario dei dati ambientali, edizione 2004, Roma

    Google Scholar 

  • APAT (2005b) La realizzazione in Italia del progetto europeo Corine Land Cover 2000. Rapporti 36/2005. ISBN: 88-448-0162-0

    Google Scholar 

  • APAT (2007a) Rapporto sulle frane in Italia. Il Progetto IFFI. Rapporti APAT 78/2007. ISBN: 978-88-448-0310-0

    Google Scholar 

  • APAT (2007b) Siti Contaminati di Interesse Nazionale: ne esistono 54 e sono altamente pericolosi. APAT Press release, Rome

    Google Scholar 

  • APAT (2008) Il suolo, la radice della vita. APAT, Roma, pp 112–113

    Google Scholar 

  • Arnold JG, Williams JR, Griggs RH, Sammons NB (1990) SWRRB—a basin scale simulation model for soil and water resources management. Texas A & M Press, College Station

    Google Scholar 

  • Arnold JG, Srinivason R, Muttiah R, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89

    CAS  Google Scholar 

  • Asaro V (2010) La Valutazione del consumo del suolo mediante analisi spazio-temporale. Tesi di Laurea. Dipartimento dei Sistemi AgroAmbientali. Facoltà di Agraria, Palermo

    Google Scholar 

  • Ayers RS, Westcot DW (1994) Water quality for agriculture. FAO Irrigation and Drainage Paper n. 29 Rev. 1, Rome

    Google Scholar 

  • Bagarello V (1994) Procedure semplificate per la stima del fattore climatico della USLE nell'ambiente molisano. In: Proceedings of Giornate di Studio su “Sviluppi recenti delle ricerche sull’erosione e sul suo controllo”, Febbraio, Bari, 17–18

    Google Scholar 

  • Bagarello V, Ferro V (2004) Plot-scale measurement of soil erosion at the experimental area of Sparacia (southern Italy). Hydrol Process 18(1):141–157

    Google Scholar 

  • Bagarello V, Ferro V (2010) Analysis of soil loss data from plots of differing length for the Sparacia experimental area, Sicily, Italy. Biosystems Eng 105(3):411–422

    Google Scholar 

  • Bagarello V, Di Piazza GV, Ferro V, Giordano G (2008) Predicting unit plot soil loss in Sicily, south Italy. Hydrol Process 22(5):586–595

    Google Scholar 

  • Bagarello V, Ferro V, Giordano G (2010) Testing alternative erosivity indices to predict event soil loss from bare plots in Southern Italy. Hydrol Process 24(6):789–797

    Google Scholar 

  • Bagarello V, Di Stefano C, Ferro V, Pampalone V (2011) Using plot soil loss distribution for soil conservation design. Catena 86(3):172–177

    Google Scholar 

  • Barberis R (2005) Consumo di suolo e qualità dei suoli urbani. In: Rapporto sullo stato dell’ambiente in Piemonte. Arpa Piemonte, pp 703–729

    Google Scholar 

  • Barrow EM (1993) Scenarios of climate change for the European community. Eur J Agronom 2(4):247–260

    Google Scholar 

  • Bart IL (2009) Does urban sprawl cause the growth of transport CO2 emissions? A statistical analysis and a look at policy options for the EU. Fifth Urban Research Symposium, p 18

    Google Scholar 

  • Bazzoffi P (1987) Previsione dell’interrimento nei serbatoi artificiali italiani-modello P.I.S.A. Idrotecnica 1:5–17

    Google Scholar 

  • Bazzoffi P (1993) The “P.I.S.A. 2” statistical model for the automatic assessment of reservoir sedimentation. In: Giussani G, Callieri C (eds) 5th International conference on the conservation and management of lakes. Strategies for lake ecosystems beyond 2000. Stresa, 17–21 May 1993, pp 245–248

    Google Scholar 

  • Bazzoffi P, Chisci G (1999) Tecniche di conservazione del suolo in vigneti e pescheti della collina cesenate. Rivista di Agronomia 3:177–184

    Google Scholar 

  • Bazzoffi P, Baldassarre G, Vacca S (1996) Validation of PISA2 model for automatic assessment of reservoir sedimentation. In: Albertson M (ed) International conference on reservoir sedimentation. Colorado State University, pp 519–528

    Google Scholar 

  • Beasley DB, Huggins LF, Monke EJ (1980) ANSWERS—a model for watershed planning. Trans Am Soc Agric Eng 23:938–944

    Google Scholar 

  • Beccaloni E, Vanni F, Giovannangeli S, Beccaloni M, Carere M (2010) Agricultural soils potentially contaminated: risk assessment procedure case studies. Ann Ist Super Sanità 46(3):303–308. doi:10.4415/Ann_10_03_14

    CAS  Google Scholar 

  • Bingner RL, Theurer FD (2001) AnnAGNPS: estimating sediment yield by particle size for sheet and rill erosion. In: Proceedings of 7th federal interagency sedimentation conference: sedimentation monitoring, modelling, and managing, vol 1, Interagency Advisory Committee on Water Data, Subcommittee on Sedimentation, Washington, pp I‐1–I‐7

    Google Scholar 

  • Bingner RL, Theurer FD (2009) AGNPS web site. Internet at http://www.ars.usda.gov/Research/docs.htm?docid=5199. (verified on 29 Sept 2011)

  • Bini C, Sartori G, Wahsha M, Fontana S (2011) Background levels of trace elements and soil geochemistry at regional level in NE Italy. J Geochem Explor 109(1–3):125–133

    CAS  Google Scholar 

  • Bini C, Maleci L, Romanin A (2008) The chromium issue in soils of the leather tannery district in Italy. J Geochem Explor 96(2–3):194–202

    CAS  Google Scholar 

  • Bockheim JG, Gennadiyev AN (2000) The role of soil-forming processes in the definition of taxa in soil taxonomy and the world soil reference base. Geoderma 95:53–72

    Google Scholar 

  • Bosco C, Montanarella L, Rusco E, Oliveri S, Panagos P (2008) Soil erosion in the Alps. Office of Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Brandt J, Thornes JB (1996) Mediterranean desertification and land use. Wiley, Chichester, p 554

    Google Scholar 

  • Brath A, Castellarin A, Montanari A (2002) Assessing the effects of land-use changes on annual average gross erosion. Hydrol Earth Syst Sci 6(2):255–265

    Google Scholar 

  • Bray R, Vakil C, Elliott D (2005) Report on public health and urban sprawl in Ontario: a review of the pertinent literature. Environmental Health Committee, Ontario. College of Family Physicians, p 53

    Google Scholar 

  • Bruno C, Di Stefano C, Ferro V (2008) Field investigation on rilling in the experimental Sparacia area, South Italy. Earth Surf Proc Land 33(2):263–279

    Google Scholar 

  • Buscaroli A, Zannoni D (2010) Influence of ground water on soil salinity in the San Vitale Pinewood (Ravenna—Italy). Agrochimica 5:303–320

    Google Scholar 

  • Calzolari C, Ungaro F (2005) La carta della dotazione in sostanza organica della pianura emiliano-romagnola. Il Suolo 34–36(1–3):29–32 (in Italian)

    Google Scholar 

  • Capolongo D, Diodato N, Mannaerts CM, Piccarreta M, Strobl RO (2008a) Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy). J Hydrol 356(1–2):119–130

    Google Scholar 

  • Capolongo D, Pennetta L, Piccarreta M, Fallacara G, Boenzi F (2008b) Spatial and temporal variations in soil erosion and deposition due to land-levelling in a semi-arid area of Basilicata (Southern Italy). Earth Surf Proc Land 33(3):364–379

    Google Scholar 

  • Caturano G (2011) La percezione del suolo nella legislazione ambientale. In: Dazzi C. (ed) La percezione del Suolo, Atti del workshop, Le Penseur. Brienza, pp 100–112

    Google Scholar 

  • Cecchi S, Zanchi C (2008) Climatic risk of soil salinization in the Grosseto Plain (Central Italy). J Agric Environ Int Dev 102(4):19−37

    Google Scholar 

  • Cerdan O, Le Bissonnais Y, Couturier A, Saby N (2002) Modelling interrill erosion in small cultivated catchments. Hydrol Process 16(16):3215–3226

    Google Scholar 

  • Cerli C, Celi L, Bosio P, Motta R, Grassi G (2009) Effects of land use change on soil properties and carbon accumulation in the Ticino Park (North Italy). Stud Trent Sci Nat 85:83–92

    Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi:10.1007/s00442-004-1788

    Google Scholar 

  • Chisci G, Fierotti G, Dazzi C (1986) Italian report on aspects of impact of agriculture on the environment. In: Workshop on aspects of impact of agriculture on the environment. Quaderni di Agronomia—n.°11, Copenhaghen, pp 225–265

    Google Scholar 

  • Chiti T, Gardi L, Perugini L, Quaratino R, Vaccari RP, Miglietta F, Valentini R (2011) Soil organic carbon stock assessment for the different cropland land uses in Italy. Biol Fertil Soils. doi:10.1007/s00374-011-0599-4

  • Ciccacci S, Fredi P, Lupia Palmieri E, Pugliese F (1987) Indirect evaluation of erosion entity in drainage basins through geomorphic, climatic and hydrological parameters. In: Gardiner V (ed) International geomorphology 1986 Part II. John Wiley Sons Ltd, Chichester, pp 33–48

    Google Scholar 

  • Consulente Energia (2011) Il fotovoltaico in Italia e le cifre del conto energia. http://www.consulente-energia.com/fv-boom-crescita-statistiche-fotovoltaico-italia-numero-impianti-conto-energia.html (verified 20 Sept 2011)

  • Costantini EAC, Barbetti R (2008) Environmental and visual impact analysis of viticulture and olive tree cultivation in the province of Siena (Italy). Eur J Agronomy 28:412–426

    Google Scholar 

  • Costantini EAC, Barbetti R, Righini G (2002) Managing the uncertainty in soil mapping and land evaluation in areas of high pedodiversity. Methods and strategies applied in the province of Siena (Central Italy). In: Zdruli P, Steduto P, Kapur S (eds) Acts of the International Symposium on soils with med type of climate. CIHEAM-IAMB, Bari, pp 45–56

    Google Scholar 

  • Costantini EAC, Urbano F, Aramini G, Barbetti R, Bellino F, Bocci M, Bonati G, Fais A, L’Abate G, Loj G, Magini S, Napoli R, Nino P, Paolanti M, Perciabosco M, Tascone F (2009) Rationale and methods for compiling an atlas of desertification in Italy. Land Degrad Develop 20:261–276

    Google Scholar 

  • D’antonio A, Ingenito MR (2008) Le problematiche dei suoli nelle regioni italiane: Campania. In: Il suolo, la radice della vita. APAT, Roma, pp 100–101

    Google Scholar 

  • Danish Hydraulic Institute (DHI) (1998) MIKE SHE water movement—user guide and technical reference manual, Edition 1.1. Danish Hydraulic Institute

    Google Scholar 

  • Davidson EA, Ackerman IL (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochem 20:161–193

    CAS  Google Scholar 

  • Dazzi C (1995) L’erosione “genetica” dell’ecosistema suolo. Atti del Convegno Nazionale SISS “Il Ruolo della Pedologia nella Pianificazione e Gestione del Territorio”. Giugno, Cagliari, pp 197–202

    Google Scholar 

  • Dazzi C (2006) Acque saline e qualità del suolo. Italian J Agronomy Suppl Issue 1, N°3:467–474. ISSN: 1125-4718

    Google Scholar 

  • Dazzi C (2008a) La salinizzazione. In: Il suolo, la radice della vita. APAT, Roma, pp 52–53

    Google Scholar 

  • Dazzi C (2008b) Soils, environmental awareness and ecological footprint in the European countries. In: Sobockà J, Kulhavy J (eds) Proceedings volume on CD of the 1st conference of the Czech soil science society and Societas Pedologica Slovacca “Soil in modern information society”. Bratislava. ISBN: 978-80-89128-44-0, pp 49–57

    Google Scholar 

  • Dazzi C (2011) Il World Soil Day e la percezione del suolo. In: Dazzi C (ed) La Percezione del Suolo, Edizioni Le Penseur, pp 16–22. ISBN: 978-88-95315-11-9

    Google Scholar 

  • Dazzi C, Fierotti G (1996) Problems and management of salt-affected soils in Sicily—in soil salinization and alkalization in Europe. In: Misopolinos N, Szabolcs I (eds) European society for soil conservation. Thessaloniki, Greece, pp 129–137

    Google Scholar 

  • Dazzi C, Monteleone S (1999) Consequences of human activities on pedodiversity of soils: a case study in a vineyard area in south–east Sicily (Italy). In: Proceedings of the ESSC international conference on “soil conservation in large-scale land use”. Bratislava, May 1999, pp 99–108

    Google Scholar 

  • Dazzi C, Monteleone S (2007) Anthropogenic processes in the evolution of a soil chronosequence on marly-limestone substrata in an Italian Mediterranean environment. Geoderma 141(3–4):201–209. doi:10.1016/j.geoderma.2007.05.016

    Google Scholar 

  • Dazzi C, Raimondi S, Lupo M, Tusa D (1997) Il consumo di suolo dovuto all’urbanizzazione: l’esempio di una pianura alluvionale costiera (Palermo). Atti della 1a Conferenza Nazionale delle Associazioni Scientifiche per le Informazioni territoriali e Ambientali “Le Immagini e le Informazioni Territoriali” Parma 30 settembre—3 ottobre, pp 348–357

    Google Scholar 

  • Dazzi C, Monteleone S, Scalenghe R (2004) Anthropogenic soils originated by severe disturbances due to large scale farming. In: Proceedings of the 4th international congress of the ESSC. Budapest, pp 153–156

    Google Scholar 

  • Dazzi C, Laudicina VA, Lo Papa G, Monteleone S, Scalenghe R (2005) Soils with gypsic horizons in Southern Sicily, Italy. In: Faz Cano A, Ortiz R, Mermut AR (eds) Sustainable use and management of soils—Arid and Semiarid regions. Advances in GeoEcology, vol 36, Catena, ISBN: 3-923381-49-2, pp 13–22

    Google Scholar 

  • Dazzi C, Lo Papa G, Palermo V (2008) Spatio-temporal effects of land use change on the anthropogenic soils diffusion: a case study in a Mediterranean Vineyard area. In: Dazzi C, Costantini E (eds) The soils of tomorrow: soils changing in a changing world, Advances in GeoEcology, vol 39, Catena, ISBN: 978-3-923381-56-2, pp 61–80

    Google Scholar 

  • Dazzi C, Lo Papa G, Palermo V (2009) Proposal for a new diagnostic horizon for WRB anthrosols. Geoderma 151:16–21. doi:10.1016/j.geoderma.2009.03.013

    Google Scholar 

  • De Jong SM, Riezebos HT (1997) SEMMED: a distributed approach to soil erosion modelling. In: Spiteri A (ed) RemoteSensing ‘96: integrated applications for risk assessment and disaster prevention for the Mediterranean. Balkema, Rotterdam, pp 199–204

    Google Scholar 

  • De Jong SM, Paracchini ML, Bertolo F, Folving S, Megier J, De Roo APJ (1999) Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena 37(3–4):291–308

    Google Scholar 

  • De Roo A, Wesseling C, Jetten V, Ritsema C (1992) LISEM: Limburg soil erosion model. Department of Physical Geography, Utrecht University, The Netherlands

    Google Scholar 

  • Di Simine D (2011) Consumo di suolo: i numeri e il fenomeno. In: Ambiente Italia 2011: il consumo di suolo in Italia. Rapporto annuale Legambiente. Edizioni Ambiente, pp 55–70

    Google Scholar 

  • Di Stefano C, Ferro V, Porto P (2000) Length slope factors for applying the revised universal soil loss equation at basin scale in southern Italy. J Agric Eng Res 75(4):349–364

    Google Scholar 

  • Diodato N (2004) Estimating RUSLE’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrol Earth Syst Sci 8(1):103–107

    Google Scholar 

  • Diodato N, Bellocchi G (2007) Estimating monthly (R)USLE climate input in a Mediterranean region using limited data. J Hydrol 345(3–4):224–236

    Google Scholar 

  • Diodato N, Ceccarelli M, Bellocchi G (2008) Decadal and century-long changes in the reconstruction of erosive rainfall anomalies in a Mediterranean fluvial basin. Earth Surf Proc Land 33(13):2078–2093

    Google Scholar 

  • Drake NA, Vafeidis A (2004) A review of European Union funded research into the monitoring and mapping of Mediterranean desertification. Adv Environ Monit Model 1(4):1–51

    Google Scholar 

  • EEA (1995) CORINE soil erosion risk and important land resources—in the southern regions of the European Community. Commission of the European Communities, Denmark. Online at: http://www.eea.eu.int/

  • EEA (2003) Mapping the impacts of recent natural disasters and technological accidents in Europe. Environmental issue report N. 35, Copenhagen, ISBN: 92-9167-630-6

    Google Scholar 

  • EEA (2005) The European environment—state and outlook 2005. Copenhagen

    Google Scholar 

  • EEA (2006a) Land account for Europe 1990–2000. Towards integrated land and ecosystem accounting. EEA report n. 11

    Google Scholar 

  • EEA (2006b) Urban sprawl in Europe. The ignored challenge. EEA report n. 10

    Google Scholar 

  • EEA (2007a) Europe’s Environment: the fourth assessment. State of the environment report No 1/2007, European Environment Agency, Copenhagen, Denmark

    Google Scholar 

  • EEA (2007b) Overview of economic activities causing soil contamination in some WCE and SEE countries. Graph. Available Online on http://www.eea.europa.eu/data-and-maps/figures/overview-of-economic-activities-causing-soil-contamination-in-some-wce-and-see-countries-pct-of-investigated-sites (verified on 29 Sept 2011)

  • EEA (2010) Mapping the impacts of natural hazards and technological accidents in Europe. An overview of the last decade. EEA Technical report No 13/2010 Copenhagen, ISBN: 978-92-9213-168-5; ISSN: 1725-2237. doi:10.2800/62638

  • EMEP/MSC-W (1998) Transboundary air pollution in Europe. Part 1: Estimated dispersion of acidifying and eutrophying compounds and comparison with observations. Meteorological Synthesizing Centre West, The Norwegian Meteorological Institute, Oslo, Norway. EMEP/MSC-W Report 1/98, p 150

    Google Scholar 

  • Ewing R, Schmid T, Killingsworth R, Zlot A, Raudenbush S (2003) Relationship between urban sprawl and physical activity, obesity and morbidity. Am J Health Promot, vol 18, N. 1

    Google Scholar 

  • Facchinelli A, Magnoni M, Gallini L, Bonifacio E (2002) 137Cs contamination from Chernobyl of soils in Piemonte (North–West Italy): spatial distribution and deposition model. Water Air Soil Pollut 134(1):339–350

    Google Scholar 

  • Fanning DS, Fanning MC (1989) Soil morphology, genesis and classification. Wiley

    Google Scholar 

  • Fantappiè M, L’Abate A, Costantini EAC (2010) Factors influencing soil organic carbon stock variations in Italy during the last three decades. In: Zdruli P, Kapur S, Faz Cano A (eds) Land degradation and desertification: assessment, mitigation and remediation. Springer, Berlin, Heidelberg, New York. ISBN: 13: 978-9048186563

    Google Scholar 

  • Fantappiè M, L’Abate G, Costantini EAC (2011) The influence of climate change on the soil organic carbon content in Italy from 1979 to 2008. Geomorphology 135:343–352

    Google Scholar 

  • Favis-Mortlock DT (1996) An evolutionary approach to the simulation of rill initiation and development. In: Abrahart RJ (ed) Proceedings of the first international conference on geocomputation, vol 1, School of Geography, University of Leeds, pp 248–281

    Google Scholar 

  • Favis-Mortlock DT (1998) A self-organising dynamic systems approach to the simulation of rill initiation and development on hillslopes. Comput Geosci 24(4):353–372

    Google Scholar 

  • Feller C, Beare MH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116

    CAS  Google Scholar 

  • Ferro V, Porto P (1999) A comparative study of rainfall erosivity estimation for southern Italy and southeastern Australia. Hydrol Sci J–J Des Sci Hydrologiques 44(1):3–24

    Google Scholar 

  • Flanagan DC, Nearing MA (eds) (1995) USDA-water erosion prediction project: hillslope profile and watershed model documentation. NSERL Report No. 10, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, Indiana

    Google Scholar 

  • Foster GR, Lane LJ, Nowlin JD, Laflen JM, Young RA (1980) A model to estimate sediment yield from field-sized areas: development of model. In: Knisel WG (ed) CREAMS, a field scale model for chemicals, runoff, and erosion from agricultural management systems, Chapter 3. US Dept Agriculture, Conservation Research Report no. 26, pp 36–64

    Google Scholar 

  • Frumkin H (2002) Urban sprawl and public health. Association of Shool of public health. Public Health Report n. 117, pp 201–217

    Google Scholar 

  • Gardi C, Sconosciuto F (2007) Evaluation of carbon stock variation in Northern Italian soils over the last 70 years. Sustain Sci 2:237–243

    Google Scholar 

  • Gardi C, Dall’Olio N, Cavallo MC (2007) Urbanization process and variation of energy budget of land surfaces. Ital J Agron 2(2):119–125

    Google Scholar 

  • Gardin L, Vinci A (2008) Le problematiche dei suoli nelle regioni italiane: Toscana. In: Il suolo, la radice della vita. APAT, Roma, pp 90–91

    Google Scholar 

  • Garlato A, Obber S, Vinci I, Mancabelli A, Parisi A, Sartori G (2009a) La determinazione dello stock di carbonio nei suoli del Trentino a partire dalla banca dati della carta dei suoli alla scala 1:250.000. Stud Trent Sci Nat 85:157–160

    Google Scholar 

  • Garlato A, Obber S, Vinci I, Sartori G, Manni G (2009b) Stock attuale di carbonio organico nei suoli di montagna del Veneto. Stud Trent Sci Nat 85:69–81

    Google Scholar 

  • Gassman PW, Williams JR, Wang X, Saleh A, Osei E, Hauck LM, Izaurralde RC, Flowers JD (2009) The Agricultural Policy Environmental EXtender (APEX) model: an emerging tool for landscape and watershed environmental analyses. Technical Report 09-TR 49. Center for Agricultural and Rural Development, Iowa State University. Ames, IA

    Google Scholar 

  • Gerdol R, Bragazza L, Marchesini R, Alber R, Bonetti L, Lorenzoni G, Achilli M, Buffoni A, De Marco N, Franchi M, Pison S, Giaquinta S, Palmieri F, Spezzano P (2000) Monitoring of heavy metal deposition in Northern Italy by moss analysis. Environ Pollut 108(2):201–208

    CAS  Google Scholar 

  • Geter WF, Theurer FD (1998) AnnAGNPS—RUSLE sheet and rill erosion. In: Proceedings of the first federal interagency hydrologic modeling conference. Las Vegas, Nevada. 19–23 Apr 1998, pp 1-17–1-24

    Google Scholar 

  • Giandon P, Cappellin R (2008) Le problematiche dei suoli nelle regioni italiane: Veneto. In “Il suolo, la radice della vita”. APAT, Roma, pp 84–85

    Google Scholar 

  • Giardina CP, Sanford RL, Dockersmith IC, Jaramillo VJ (2000) The effects of slash burning on ecosystem nutrients during the land preparation phase of shifting cultivation. Plant Soil 220:247–260

    CAS  Google Scholar 

  • Giudice M, Minucci F (2011) Il consumo di suolo in Italia. Sistemi editoriali SE. ISBN: 978-88-513-0680-9, p 270

    Google Scholar 

  • Gobin A, Jones RJA, Kirkby MJ, Campling P, Govers G, Kosmas C, Gentile AR (2004) Indicators for pan-European assessment and monitoring of soil erosion by water. Environ Sci Policy 7:25–38

    Google Scholar 

  • Grauso S, Diodato N, Verrubbi V (2010) Calibrating a rainfall erosivity assessment model at regional scale in Mediterranean area. Environ Earth Sci 60(8):1597–1606

    Google Scholar 

  • Grimm M, Jones RJA, Rusco E, Montanarella L (2003) Soil erosion risk in Italy: a revised USLE approach. European Soil Bureau Research Report No.11, EUR 20677 EN, (2002). Office for Official Publications of the European Communities, Luxembourg, p 28

    Google Scholar 

  • Guo Y, Amundson R, Gong P, Ahrens R (2003a) Taxonomic structure, distribution, and abundance of soils in the USA. Soil Sci Soc Am J 67:1507–1516

    CAS  Google Scholar 

  • Guo Y, Gong P, Amundson R (2003b) Pedodiversity in the United States of America. Geoderma 117:99–115

    Google Scholar 

  • Halvorson AD, Reule CA, Anderson RL (2000) Evaluation of management practices for converting grass land back to cropland. Soil Water Conserv 55:57–62

    Google Scholar 

  • Hughes JD, Thirgood JV (1982) Deforestation, erosion and forest management in ancient Greece and Rome. J Forest Hist 26(2):60–75

    Google Scholar 

  • Ibáñez JJ, Jiménez-Ballesta R, García-Álvarez A (1990) Soil landscapes and drainage basins in Mediterranean mountain areas. Catena 17:573–583

    Google Scholar 

  • Ibáñez JJ, López-Lafuente A, Saldaña A, De Alba S (1992) La diversidad de los suelos en las áreas de montaña bajo clima mediterráneo. In: Suelo CC (ed) Soc. Esp. Mem. III Congr. Nac (Pamplona, Septiembre 1992), pp 508–513

    Google Scholar 

  • Indorante A, Laudicina VA, Raimondi S, Tusa D (2001) Evoluzione della salinità del suolo durante un biennio di osservazioni in due ambienti irrigui siciliani. Atti Convegno Conclusivo Progetto POM-OTRIS, Bari, pp 249–262

    Google Scholar 

  • IPCC (2007) Climate change 2007. An assessment of the intergovernmental panel on climate change: synthesis report. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf (verified on 29 Sept 2011)

  • ISTAT (2008) Rapporto annuale. La situazione del Paese nel 2008. ISBN: 978-88-458-1617-8

    Google Scholar 

  • Italian Forest Corps (2009) Forest fires 2099, p 106. www.corpoforestale.it/ (verified 20 Sept 2011)

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. Soil resources Rep.n.103, 2nd edn FAQ, Rome

    Google Scholar 

  • Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs GJ, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze ED, Valentini R, Dolman AJ (2003) Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300:1538–1542

    CAS  Google Scholar 

  • Jones RJA, Hiederer R, Rusco E, Loveland PJ, Montanarella L (2004) The map of organic carbon in topsoils in Europe, Version 1.2, September 2003: explanation of special publication Ispra 2004 No.72 (S.P.I.04.72). European Soil Bureau Research Report No.17, EUR 21209 EN, and 1 map in ISO B1 format. Office for Official Publications of the European Communities, Luxembourg, p 26

    Google Scholar 

  • Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56(5):655–671

    CAS  Google Scholar 

  • JRC (2011) Soil themes: soil sealing. http://eusoils.jrc.ec.europa.eu/library/themes/Sealing/ (verified 20 Sept 2011)

  • Julien PY, Saghafian B (1991) CASC2D user’s manual—a two dimensional watershed rainfall-runoff model. Civil Eng. Report, CER90-91PYJ-BS-12, Colorado State University, Fort Collins, Fort Collins, CO

    Google Scholar 

  • Kennedy AC, Papendick RI (1995) Microbial characteristics of soil quality. Soil Water Conserv 50:243–247

    Google Scholar 

  • Kirkby MJ, Cox NJ (1995) A climatic index for soil erosion potential (CSEP) including seasonal and vegetation factors. Catena 25:333–352

    Google Scholar 

  • Kirkby MJ, McMahon ML (1999) MEDRUSH and the Castop Basin—the lessons learned. Catena 37:495–506

    Google Scholar 

  • Kirkby MJ, Jones RJA, Irvine B, Gobin A, Govers G, Cerdan O, Van Rompaey AJJ, Le Bissonnais Y, Daroussin J, King D, Montanarella L, Grimm M, Vieillefont V, Puigdefabregas J, Boer M, Kosmas C, Yassoglou N, Tsara M, Mantel S, Van Lynden GJ, Huting J (2004) European Soil Bureau Research Report No.16, EUR 21176, and 1 map in ISO B1 format. Office for Official Publications of the European Communities, Luxembourg, p 18

    Google Scholar 

  • Knisel WG (ed) (1993) GLEAMS groundwater loading effects of agricultural management systems, Version 2.10. Dept Publication No. 5, Biological & Agricultural Engineering Department, University of Georgia-Coastal Plain Experiment Station, Tifton, p 260

    Google Scholar 

  • Kong X, Zhang F, Wei Q, Xu Y, Hui J (2006) Influence of land use change on soil nutrients in an intensive agricultural region of North China. Soil Tillage Res 88:85–94

    Google Scholar 

  • Krasilnikov PV (2001) Mosaics of the soil cover and species diversity of aboveground vegetation in forest ecosystems of Eastern Fennoscandia. Euras Soil Sci 34(Suppl 1):S90–S99

    Google Scholar 

  • Lado LR, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma 148(2):189–199

    CAS  Google Scholar 

  • Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Develop 17:197–209

    Google Scholar 

  • Lal R, Griffin M, Apt J, Grave L, Morgan MG (2004) Managing soil carbon. Science 304:393

    CAS  Google Scholar 

  • Le Bissonnais Y, Montier C, Jamagne M, Daroussin J, King D (2002) Mapping erosion risk for cultivated soil in France. Catena 46:207–220

    Google Scholar 

  • Legambiente (2010a) I ritardi dei Piani regionali per la bonifica dell’amianto. Rapporto Legambiente. Milano, p 21

    Google Scholar 

  • Legambiente (2010b) Rapporto Ecomafia 2010—Premessa. Rapporto Legambiente. Milano, p 41

    Google Scholar 

  • Legambiente (2010c) Un’altra casa? Dossier di Legambiente. Luglio

    Google Scholar 

  • Lemenih M, Karltun E, Olsson M (2005) Soil organic matter dynamics after deforestation along a farm field chronosequence in southern highlands of Ethiopia. Agric Ecosyst Environ 109:9–19

    Google Scholar 

  • Leonard RA, Knisel WG, Still DA (1987) GLEAMS: groundwater loading effects of agricultural management systems. Trans ASAE 30(5):1403–1418

    Google Scholar 

  • Licciardello F, Zema DA, Zimbone SM, Bingner RL (2007) Runoff and soil erosion evaluation by the AnnAGNPS model in a small Mediterranean watershed. Trans Am Soc Agric Biol Eng (ASABE) 50(5):1585–1593

    Google Scholar 

  • Licciardello F, Govers G, Cerdan O, Kirkby MJ, Vacca A, Kwaad FJPM (2009) Evaluation of the PESERA model in two contrasting environments. Earth Surf Proc Land 34(5):629–640

    Google Scholar 

  • Lo Papa G, Palermo V, Dazzi C (2011) Is land-use change a cause of loss of pedodiversity? The case of the Mazzarrone study area, Sicily. Geomorphology 135(3–4):332–342. doi:10.1016/j.geomorph.2011.02.015

    Google Scholar 

  • Lobb DA, Lindstrom MJ, Schumacher TE (2003) Soil erosion processes and their interactions: implications for environmental indicators. In: OECD (2003), agricultural impacts on soil erosion and soil biodiversity: developing indicators for policy analysis, Paris, France. www.oecd.org/tad/env/indicators

  • Lugato E, Zuliani M, Alberti G, Delle Vedove G, Gioli B, Miglietta F, Peressotti A (2010) Application of DNDC biogeochemistry model to estimate greenhouse gas emission from Italian agricultural areas at high spatial resolution. Agr Ecosyst Environ 139:546–556

    CAS  Google Scholar 

  • Marker M, Angeli L, Bottai L, Costantini R, Ferrari R, Innocenti L, Siciliano G (2008) Assessment of land degradation susceptibility by scenario analysis: a case study in Southern Tuscany, Italy. Geomorphology 93(1–2):120–129

    Google Scholar 

  • McLauchlan K (2006) The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9:1364–1382

    CAS  Google Scholar 

  • Mendicino G (1999) Sensitivity analysis on GIS procedures for the estimate of soil erosion risk. Nat Hazards 20(2–3):231–253

    Google Scholar 

  • Meyer CR, Wagner LE, Yoder DC, Flanagan DC (2001) The modular soil erosion system (MOSES). In: Ascough II JC, Flanagan DC (eds) Soil erosion research for the 21st century. Proceedings of the international symposium, Honolulu, HI, 3–5 Jan 2001, pp 358–361

    Google Scholar 

  • Michelutti G, Barbieri S (2008) Le problematiche dei suoli nelle regioni italiane: Friuli Venezia Giulia. In “Il suolo, la radice della vita”. APAT, Roma, pp 86–87

    Google Scholar 

  • Ministero dell'Ambiente e della Tutela del Territorio e del Mare (2010) Primo Rapporto sul Contrasto all'illegalità ambientale

    Google Scholar 

  • Mitas L, Mitasova H (1998) Distributed erosion modelling for effective erosion prevention. Water Resour Res 34(3):505–516

    Google Scholar 

  • Mitasova H, Hofierka J, Zlocha M, Iverson LR (1996) Modeling topographic potential for erosion and deposition using GIS. Int J Geogr Inf Sci 10(5):629–641

    Google Scholar 

  • Monteleone M (2006) Problematiche della salinità nelle aree irrigue meridionali. Ital J Agron 1:129–202

    Google Scholar 

  • Monteleone M, Del Vecchio S, Basso G, Tarantino E (2001) Monitoraggio della salinità delle acque di falda e dei suoli ubicati nelle aree litoranee della Capitanata. In: Atti Convegno Conclusivo Progetto “OTRIS”. Eds Tarantino & Monteleone, UniFoggia, pp 263–269

    Google Scholar 

  • Morari F, Lugato E, Berti A, Giardini L (2006) Long term effects of recommended management practices on soil carbon changes and sequestration in north-eastern Italy. Soil Use Manag 22(7):1–81

    Google Scholar 

  • Morgan RPC, Quinton JN, Smith RE, Govers G, Poesen JWA, Auerswald K, Chisci G, Torri D, Styczen ME (1998) The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf Proc Land 23:527–544

    Google Scholar 

  • Munafò M, Martellato G, Riitano N (2009) Impermeabilizzazione e consumo di suolo. In: Qualità dell’ambiente urbano. VI rapporto annuale,ISPRA ed., pp 21–38

    Google Scholar 

  • OECD (2008) Environmental performance of agriculture in OECD countries since 1990. OECD Publishing

    Google Scholar 

  • Onori F, De Bonis P, Grauso S (2006) Soil erosion prediction at the basin scale using the revised universal soil loss equation (RUSLE) in a catchment of Sicily (southern Italy). Environ Geol 50(8):1129–1140

    CAS  Google Scholar 

  • Panagos P, Van Liedekerke M, Montanarella L, Jones RJA (2008) Soil organic carbon content indicators and web mapping applications. Environ Model Softw 23(9):1207–1209

    Google Scholar 

  • Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European soil data centre: response to European policy support and public data requirements. Land Use Policy (Article in Press)

    Google Scholar 

  • Petrella F, Piazzi M (2005) Il carbonio organico negli ecosistemi agrari e forestali del Piemonte: misure ed elaborazioni. Il Suolo 34–36(1–3):33–34 (in Italian)

    Google Scholar 

  • Philips CP (1998) The badlands of Italy: a vanishing landscape? Appl Geograph 18(3):243–257

    Google Scholar 

  • Phillips JD (2001) Divergent evolution and spatial structure of soil landscape variability. Catena 43:101–113

    Google Scholar 

  • Phillips JD, Marion DA (2004) Pedological memory in forest soil development. For Ecol Manag 188:363–380

    Google Scholar 

  • Phillips JD, Marion DA (2005) Biomechanical effects, lithological variations, and local pedodiversity in some forest soils of Arkansas. Geoderma 124:73–89

    Google Scholar 

  • Phillips JD, Marion DA (2007) Soil geomorphic classification, soil taxonomy, and effects on soil richness assessments. Geoderma 141:89–97

    Google Scholar 

  • Pieri L, Bittelli M, Wu JQ, Dun S, Flanagan DC, Pisa PR, Ventura F, Salvatorelli F (2007) Using the water erosion prediction project (WEPP) model to simulate field-observed runoff and erosion in the Apennines mountain range, Italy. J Hydrol 336(1–2):84–97

    Google Scholar 

  • Pla Sentis I (1996) Soil degradation and desertification in Mediterranean environments. In: Rubio JL, Calvo A (eds) Geoforma Ediciones. Logrono, Espana

    Google Scholar 

  • Pla Sentis I, Ramos MC, Nacci S, Fonseca F, Abreu X (2004) Soil and water conservation as affected by changing Mediterranean climate and land management in vineyards of Catalonia (NE Spain). In: Proceedings of the ESSC 4th international congress of the ESSC. Budapest, pp 86–91

    Google Scholar 

  • Renard K, Foster GR, Weesies GA, Porter JP (1991) RUSLE Revised universal soil loss equation. J Soil Water Conserv 46:30–33

    Google Scholar 

  • Rifkin J (2000) The age of access: the new culture of hypercapitalism, where all of life is a paid-for experience. Penguin Putnam Inc., New York, p 312

    Google Scholar 

  • Rifkin J (2001) L’era dell’accesso. La rivoluzione della new economy. Mondadori, p 406

    Google Scholar 

  • Riggins RE, Ward TJ, Hodge W (1989) ARMSED, a runoff and sediment yield model for army training land watershed management. US Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, Ill. USA

    Google Scholar 

  • Rose CV (2001) Soil erosion models and implications for conservation of sloping tropical lands. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Sustaining the global farm. Selected papers from the 10th International soil conservation organization meeting, 24–29 May 1999. Purdue University

    Google Scholar 

  • Rosenmund A, Confalonieri R, Roggero PP, Toderi M, Acutis M (2005) Evaluation of the EUROSEM model for simulating erosion in hilly areas of Central Italy. Ital J Agrometeorol 10(2):15–23

    Google Scholar 

  • Rossi N, Ciavatta C, Antisari LV (1991) Seasonal pattern of nitrate losses from cultivated soil with subsurface drainage. Water Air Soil Pollut 60(1):1–10

    CAS  Google Scholar 

  • Rumpel C, Alexis M, Chabbi A, Chaplot V, Rasse DP, Valentin C, Mariotti A (2006) Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 130:35–46

    CAS  Google Scholar 

  • Saldaña A, Ibáñez JJ (2004) Pedodiversity analysis at large scales: an example of three fluvial terraces of the Henares River (central Spain). Geomorphology 62:123–138

    Google Scholar 

  • Saldaña A, Ibáñez JJ (2007) Pedodiversity and soil variability; What is the relationship? Ecol Modell 208:342–352

    Google Scholar 

  • Saltini A (1984) Storia delle Scienze Agrarie. Dalle origini al Rinascimento. Edagricole, p 530

    Google Scholar 

  • Scalenghe R, Ajmone Marsan F (2009) The anthropogenic sealing of soils in urban areas. Landsc Urban Plan 90:1–10. doi:10.1016/landurbplan.2008.10.011

    Google Scholar 

  • Schils R, Kuikman P, Liski J, van Oijen M, Smith P, Webb J, Alm J, Somogyi Z, van den Akker J, Billett M, Emmett B, Evans C, Lindner M, Palosuo T, Bellamy P, Alm J, Jandl R, Hiederer R (2008) Review of existing information on the interrelations between soil and climate change. Alterra

    Google Scholar 

  • Schito F (2011) Il GSE pubblica le statistiche sul fotovoltaico in Italia. http://www.mgenergy.it/2010/05/7851/Il_GSE_pubblica_le_statistiche_sul_fotovoltaico_in_Italia.html (verified 20 Sept 2011)

  • Schmidt J (1991) A mathematical model to simulate rainfall erosion. In: Catena Supplement 19, pp 101–109

    Google Scholar 

  • Simons DB, Li RM, Fullerton WT (1980) Users manual—multiple watershed model for water and sediment routing from mined areas, Simons. Li and Associates, Inc., Fort Collins

    Google Scholar 

  • Smith P, Andren O, Karlsson T, Perala P, Regina K, Rounsevell M, Wesemael B (2005) Carbon sequestration potential in European croplands has been overestimated. Glob Change Biol 11:2153–2163

    Google Scholar 

  • Smithers J, Schulze RE (1995) ACRU agrohydrological modelling system user manual. WRC Report TT 70/95, Water Research Commission, Pretoria

    Google Scholar 

  • Solaro S, Brenna S (2005) Il carbonio organico nei suoli e nelle foreste della Lombardia. Il Suolo 34–36(1–3):24–28 (in Italian)

    Google Scholar 

  • Solomon D, Lehmann J, Kinyangi J, Amelungw W, Lobez I, Pell A, Riha S, Ngoze S, Verchot L, Mbugua D, Skjemstad J, Schafer T (2007) Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Global Change Biol 13:511–530

    Google Scholar 

  • Spaccini R, Mbagwu JSC, Zena TA, Igwe CA, Piccolo A (2002) Influence of the addition of organic residues on carbohydrate content and structural stability of some highland soils in Ethiopia. Soil Use Manag 18:404–411

    Google Scholar 

  • Stolbovoy V, Filippi N, Montanarella L, Piazzi M, Petrella F, Gallego J, Selvaradjou S (2006) Validation of the EU soil sampling protocol to verify the changes of organic carbon stock in mineral soil (Piemonte region, Italy), EUR 22339 EN, p 41

    Google Scholar 

  • Szabolcs I (1994) The concept of soil resilience. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. CAB International, Wallingford, pp 32–39

    Google Scholar 

  • Szabolcs I (1998) Concepts, assessment and control of soils affected by salinization. In: Blume H-P, Eger H, Fleischhauer E, Reij C, Steiner KG (eds) Towards sustainable land use, pp 469–476

    Google Scholar 

  • Takei Y (2010) Current state and future prospects of action for soil contamination. Q Rev 36:55–67

    Google Scholar 

  • Tan M, Zhang XL, Chen J, Yan W, Yan Y (2003) Pedodiversity: a case study based on 1:1 million scale SOTER of Shandong Province, China. Pedosphere 13:119–226

    Google Scholar 

  • Tanji KK (1990) Agricultural salinity assessment and management. ASCE manuals and reports on engineering practice N°91. American Society of Civil Engineers, New York

    Google Scholar 

  • Tempesta T (2008) Consumo di suolo o consumo di ambiente? Rivista di Economia Agraria n. 4, pp 453–468

    Google Scholar 

  • Terranova O, Antronico L, Coscarelli R, Iaquinta P (2009) Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology 112(3–4):228–245

    Google Scholar 

  • Tiberi M (2008) Le problematiche dei suoli nelle regioni italiane: Marche. In: Il suolo, la radice della vita. APAT, Roma, pp 94–95

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    CAS  Google Scholar 

  • Tittonell P, Zingore S, van Wijk MT, Corbeels M, Giller KE (2007) Nutrient use efficiencies and crop responses to N, P and manure applications in Zimbabwean soils: exploring management strategies across soil fertility gradients. Field Crops Res 100:348–368

    Google Scholar 

  • Torri D (2003) An overview of the current research needs for improving soil erosion control. In: OECD (2003), agricultural impacts on soil erosion and soil biodiversity: developing indicators for policy analysis, Paris, France. www.oecd.org/tad/env/indicators (verified on 29 Sept 2011)

  • Ungaro F, Ragazzi F, Cappellin R, Giandon P (2008) Arsenic concentration in the soils of the Brenta Plain (Northern Italy): mapping the probability of exceeding contamination thresholds. J Geochem Explor 96(2–3):117–131

    CAS  Google Scholar 

  • Ungaro F, Staffilani F, Tarocco P (2010) Assessing and mapping topsoil organic carbon stock at regional scale: a scorpan kriging approach conditional on soil map delineations and land use. Land Degrad Dev 21(6):565–581

    Google Scholar 

  • Van der Knijff JM, Jones RJA, Montanarella L (1999) Soil erosion risk assessment in Italy. European Soil Bureau. EUR 19044 EN, p 52

    Google Scholar 

  • Van der Knijff JM, Jones RJA, Montanarella L (2000) Soil erosion risk assessment in Europe, EUR 19044 EN, p 34

    Google Scholar 

  • Van Oost K, Govers G, Desmet PJJ (2000) Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecol 15(6):579–591

    Google Scholar 

  • Van Oost K, Govers G, De Alba S, Quine TA (2006) Tillage erosion: a review of controlling factors and implications for soil quality. Prog Phys Geograph 30:443–466

    Google Scholar 

  • Van Rompaey AJJ, Bazzoffi P, Jones RJA, Montanarella L, Govers G (2003) Validation of soil erosion risk assessments in Italy. European Soil Bureau Research Report No.12, EUR 20676 EN, (2003). Office for Official Publications of the European Communities, Luxembourg, p 25

    Google Scholar 

  • Van Rompaey A, Bazzoffi P, Jones RJA, Montanarella L (2005) Modeling sediment yields in Italian catchments. Geomorphology 65:157–169

    Google Scholar 

  • Vance C, Hedel R (2008) On the link between urban form and automobile use: evidence from German survey data. Land Econ 84(1):51–65

    Google Scholar 

  • Wang J, He T, Guo X, Liu A, Zhou Q (2006) Dynamic changes of sandy land in northwest of Beijing, China. Environ Monit Assess 121:109–125. doi:10.1007/s10661-005-9110-8

    CAS  Google Scholar 

  • Wicks JM, Bathurst JC (1996) SHESED: a physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system. J Hydrol 175(1–4):213–238

    Google Scholar 

  • Williams JR (1975) Sediment-yield prediction with universal equation using runoff energy factor. In: Present and prospective technology for predicting sediment yield and sources. ARS.S-40, US Gov. Print. Office, Washington, DC, pp 244–252

    Google Scholar 

  • Williams JR, Jones CA, Dyke PT (1984) A modelling approach to determining the relationship between erosion and soil productivity. Trans Am Soc Agric Eng 27(1):129

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. US Department of Agriculture, Agr.Handbook No. 537, p 58

    Google Scholar 

  • Woolhiser DA, Smith RE, Goodrich DC (1990) KINEROS, a kinematic runoff and erosion model: documentation and user manual. U.S. Department of Agriculture, Agricultural Research Service, ARS-77, p 130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Dazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dazzi, C., Lo Papa, G. (2013). Soil Threats. In: Costantini, E., Dazzi, C. (eds) The Soils of Italy. World Soils Book Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5642-7_8

Download citation

Publish with us

Policies and ethics