Time as a Soil Forming Factor and Age of Italian Soils

  • Stefano Carnicelli
  • Edoardo A. C.  Costantini
Part of the World Soils Book Series book series (WSBS)


The nature and working of environmental influences conditioning time as a forming factor for soils of Italy are examined, on the light of updated geological, palaeoecological and archaeological literature. The complex of factors determining the general youth of Italian soils is discussed. The timing of formation of specific soil properties is examined, according to reported evidence from soils which were considered by the authors as firmly dated, either from hard, absolute dating or from very strong, and still presently sustainable, stratigraphic considerations. Investigation on soil age suggests that after the Last Glacial Maximum (LGM), about 18,000 years ago, the soil most likely to form on the most common, fine-textured and calcareous, parent materials of Italy is a partially decarbonated, fully base-saturated Cambisol. Horizons with clear clay illuviation appear to have formed only in favourable conditions. Such results compare very fairly with the analysis of soil pedodiversity in Italy presented elsewhere in this book. On the other hand, it is clear that Italian soils developed Nitic, Fragic, Ferric and Plinthic horizons well within Pleistocene times. The formation of fully developed, carbonate-free but base-saturated, Luvisols appears to have generally been possible starting much later than Marine Isotope Stages (MIS) 5, the last fully fledged interglacial.


Erosion Rate Gross Primary Productivity Last Glacial Maximum Soil Formation Marine Isotope Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ajmone Marsan F, Barberis E, Arduino E (1988) A soil chronosequence in Northwestern Italy: Morphological physical and chemical characteristics. Geoderma 42(1):51–64CrossRefGoogle Scholar
  2. Amato A, Aucelli PPC, Cinque A (2003) The long-term denudation rate in the Southern Apennines Chain (Italy): a GIS-aided estimation of the rock volumes eroded since Middle Pleistocene time. Quat Int 101–102:3–11. doi: 10.1016/S1040-6182(02)00087-3 CrossRefGoogle Scholar
  3. Amorosi A, Farina M, Severi P, Preti D, Caporale L, Di Dio G (1996) Genetically related alluvial deposits across active fault zones: an example of alluvial fan-terrace correlation from the upper Quaternary of the southern Po Basin. Italy Sediment Geol 102:275–295CrossRefGoogle Scholar
  4. Amorosi A, Forlani L, Fusco F, Severi P (2001) Cyclic patterns of facies and pollen associations from Late Quaternary deposits in the subsurface of Bologna. Geo Acta 1:83–94Google Scholar
  5. Anderson DE, Goudie AS, Parker AG (2007) Global Environments through the Quaternary—Exploring Environmental Change. Oxford University Press, OxfordGoogle Scholar
  6. Bartolini C (1999) An overview of Pliocene to present-day uplift and denudation rate in the Northern Apennine. In: Smith BJ, Whalley WB, Warke PA (eds) Uplift, erosion and stability: perspectives on long-term landscape development. Geological Society, LondonGoogle Scholar
  7. Bartolini C (2003) When did the northern apennine become a mountain chain? Quat Int 101–102(1):75–80. doi: 10.1016/S1040-6182(02)00090-3 CrossRefGoogle Scholar
  8. Bartolini C, Fontanelli K (2009) Present versus long term sediment yield to the Adriatic Sea and the reliability of gauging stations data. Boll Soc Geol Ital 128(3):655–667. doi: 10.3301/IJG.2009.128.3.655 Google Scholar
  9. Bartolini C, Bidini D, Ferrari GA, Magaldi D (1984) Pedostratigrafia e morfostratigrafia nello studio delle superfici sommitali situate fra Serchio e Ombrone Pistoiese. Geogr Fis Din Quat 7:3–9Google Scholar
  10. Bartolini C, Caputo R, Pieri M (1996) Pliocene-Quaternary sedimentation in the Northern Apennine foredeep and related denudation. Geol Mag 133(3):255–273. doi: 10.1017/S0016756800009006 CrossRefGoogle Scholar
  11. Boenzi F, Caldara M, Capolongo D, Dellino P, Piccarreta M, Simone O (2008) Late Pleistocene-Holocene landscape evolution in Fossa Bradanica, Basilicata, Southern Italy. Geomorphology 102(3–4):297–306. doi: 10.1016/j.geomorph.2008.03.013 CrossRefGoogle Scholar
  12. Buccolini M, Gentili B, Materazzi M, Piacentini T (2010) Late Quaternary geomorphological evolution and erosion rates in the clayey per-Adriatic belt (Central Italy). Geomorphology 116:145–161. doi: 10.1016/j.geomorph.2009.10.015 CrossRefGoogle Scholar
  13. Bull WB (1990) Stream-terrace genesis: implication for soil development. Geomorphology 3(3–4):351–367. doi: 10.1016/0169-555X(90)90011-E CrossRefGoogle Scholar
  14. Carnicelli S, Benvenuti M, Ferrari GA, Sagri M (2008) Dynamics and driving factors of late Holocene gullying in the Main Ethiopian Rift (MER). Geomorphology 103:541–554. doi: 10.1016/j.geomorph.2008.07.019 CrossRefGoogle Scholar
  15. Cavazza W, Roure F, Ziegler PA (2004) The Mediterranean area and the surrounding regions: active processes, remnants of former Tethyan oceans and related thrust belts. In: Cavazza et al (eds): The TRANSMED Atlas—the Mediterranean Region from Crust to Mantle. Springer, HeidelbergGoogle Scholar
  16. Cecchini G, Carnicelli S, Mirabella A, Mantelli F, Sanesi G (2002) Soil conditions under a Fagus Sylvatica stand in Central Italy: an integrated assessment through combined solid phase and solution studies. J Limnol 61(1):36–45CrossRefGoogle Scholar
  17. Certini G, Ugolini FC, Corti G, Agnelli A (1998) Early stages of podzolization under Corsican pine (Pinus nigra Arn. ssp. laricio). Geoderma 83(1–2):103–125. doi: 10.1016/S0016-7061(97)00137-7 CrossRefGoogle Scholar
  18. Chapman JL, Reiss MJ (1999) Ecology—Principles and Applications. Cambridge University Press, CambridgeGoogle Scholar
  19. Coltorti M, Consoli M, Dramis F, Gentili B, Pambianchi G (1991) Evoluzione geomorfologica delle piane alluvionali delle Marche centro-meridionali. Geog Fis Din Quat 14:87–100Google Scholar
  20. Costantini EAC, Damiani D (2004) Clay minerals and the development of Quaternary soils in central Italy. Rev Mex Cienc Geol 21(1):144–159Google Scholar
  21. Costantini EAC, Napoli R (1992) I suoli e i paesaggi del comprensorio tabacchicolo veronese. Ann Ist Sper Studio Dif Suolo XX:45–66Google Scholar
  22. Costantini EAC, Lessovaia S, Vodyanitskii Yu (2006) Using the analysis of iron and iron oxides in paleosols (TEM, geochemistry and iron forms) for the assessment of present and past pedogenesis. Quat Int 156–157:200–211. doi: 10.1016/j.quaint.2006.05.008 CrossRefGoogle Scholar
  23. Costantini EAC, Priori S, Urban B, Hilgers A, Sauer D, Protano G, Trombino L, Hülle D, Nannoni F (2009) Multidisciplinary characterization of the middle Holocene eolian deposits of the Elsa river basin (central Italy). Quat Int 209(1–2):107–130. doi: 10.1016/j.quaint.2009.02.025 CrossRefGoogle Scholar
  24. Cremaschi M (1987) Paleosols and Vetusols in the Central Po Plain (Northern Italy)—a study in Quaternary Geology and Soil Development. Unicopli, MilanoGoogle Scholar
  25. Cruise GM, Macphail RI, Linderholm J, Maggi R, Marshall PD (2009) Lago di Bargone, Liguria, N Italy: A reconstruction of Holocene environmental and land-use history. Holocene 19(7):987–1003. doi: 10.1177/0959683609343142 CrossRefGoogle Scholar
  26. Cyr AJ, Granger DE (2008) Dynamic equilibrium among erosion, river incision, and coastal uplift in the northern and central Apennines. Italy Geol 36(2):103–106. doi: 10.1130/G24003A.1 CrossRefGoogle Scholar
  27. De Vos B, Cools N (2011) Second European Forest Soil Condition Report—Volume I: Results of the Biosoil Soil Survey. INBO, GeraardsbergenGoogle Scholar
  28. de Wit HE, Sevink J, Andriessen PAM, Hebeda EH (1987) Stratigraphy and radiometric datings of a Mid-Pleistocene transgressive complex in the Agro Pontino (Central Italy). Geol Romana 26:449–460Google Scholar
  29. Dokuchaev VV (1967) Selected works (Izbrannye sochineniya) Translated from Russian by N Kaner. Israel Program for Scientific Translations, JerusalemGoogle Scholar
  30. Egli M, Alioth L, Mirabella A, Raimondi S, Nater M, Verel R (2007) Effect of climate and vegetation on soil organic carbon, humus fractions, Allophanes, Imogolite, Kaolinite, and oxyhydroxydes in volcanic soils of Etna (Sicily). Soil Sci 172(9):673–691. doi: 10.1097/ss.0b013e31809eda23 CrossRefGoogle Scholar
  31. Egli M, Nater M, Mirabella A, Raimondi S, Plötze M, Alioth L (2008) Clay minerals, oxyhydroxide formation, element leaching and humus development in volcanic soils. Geoderma 143:101–114. doi: 10.1016/j.geoderma.2007.10.020 CrossRefGoogle Scholar
  32. Einsele G (2000) Sedimentary Basins, Evolution, Facies and Sediment Budget, II edn. Springer, BerlinGoogle Scholar
  33. Eppes MC, Bierma R, Vinson D, Pazzaglia F (2008) A soil chronosequence study of the Reno valley, Italy: Insights into the relative role of climate versus anthropogenic forcing on hillslope processes during the mid-Holocene. Geoderma 147:97–107. doi: 10.1016/j.geoderma.2008.07.011 CrossRefGoogle Scholar
  34. Favilli F, Cherubini P, Collenberg M, Egli M, Sartori G, Schoch W, Haeberli W (2010) Charcoal fragments of Alpine soils as an indicator of landscape evolution during the Holocene in Val di Sole (Trentino, Italy). Holocene 20(1):67–79. doi: 10.1177/0959683609348850 CrossRefGoogle Scholar
  35. Ferraro F (2009) Age, sedimentation, and soil formation in the Val Sorda loess sequence, Northern Italy. Quat Int 204:54–64. doi: 10.1016/j.quaint.2008.12.002 CrossRefGoogle Scholar
  36. Frezzotti M, Narcisi B (1996) Late Quaternary tephra-derived Palaeosols in Central Italy’s carbonate Apennine range: stratigraphical and paleoclimatological implications. Quat Int 34–36:147–153CrossRefGoogle Scholar
  37. Frisch W, Blakey R, Meschede M (2011) Plate Tectonics—Continental Drift and Mountain Building. Springer, HeidelbergGoogle Scholar
  38. Gioia D, Martino C, Schiattarella M (2011) Long—to short-term denudation rates in the Southern Apennines: geomorphological markers and chronological constraints. Geol Carpathica 62(1):27–41. doi: 10.2478/v10096-011-0003-1 CrossRefGoogle Scholar
  39. Goslar T, van der Knaap WO, Hicks S, Andrič M, Czernik J, Goslar E, Räsänen S, Hyötilä H (2005) Radiocarbon dating of modern peat profiles: pre- and post-bomb 14C variations in the construction of age-depth models. Radiocarbon 47(1):115–134Google Scholar
  40. Hinderer M (2001) Late Quaternary denudation of the Southern watershed of the Alps, valley and lake fillings and modern river loads. Geodin Acta 14:231–263. doi: 10.1016/S0985-3111(01)01070-1 CrossRefGoogle Scholar
  41. Kaltenrieder P, Procacci G, Vannière B, Tinner W (2010) Vegetation and fire history of the Euganean Hills (Colli Euganei) as recorded by Lateglacial and Holocene sedimentary series from Lago della Costa (northeastern Italy). Holocene 20(5):679–695. doi: 10.1177/0959683609358911 CrossRefGoogle Scholar
  42. Martini M, Sibilia E, Croci S, Cremaschi M (2001) Thermoluminescence (TL) dating of burnt flints: problems, perspectives and some examples of application. J Cult Herit 2:179–190. doi: 10.1016/S1296-2074(01)01126-8 CrossRefGoogle Scholar
  43. Mazzanti R, Sanesi G (1986) Geologia e morfologia della bassa Val di Cecina. Quad Mus Storia Nat Livorno 7(1):1–27Google Scholar
  44. Napoli R, Costantini EAC, D’Egidio G (2006) Using pedostratigraphic levels and a GIS to generate three-dimensional maps of the Quaternary soil cover and reconstruct the geomorphological development of the Montagnola Senese (Central Italy). Quat Int 156–157:167–175. doi: 10.1016/j.quaint.2006.05.010 CrossRefGoogle Scholar
  45. Norton KP, von Blanckenburg F, DiBiase R, Schlunegger F, Kubik PW (2011) Cosmogenic 10Be-derived denudation rates of the Eastern and Southern European Alps. Int J Earth Sci 100(5):1163–1179. doi: 10.1007/s00531-010-0626-y CrossRefGoogle Scholar
  46. Noti R, van Leeuwen JFN, Colombaroli D, Vescovi E, Pasta S, la Mantia T, Tinner W (2009) Mid- and late-Holocene vegetation and fire history at Biviere di Gela, a coastal lake in Southern sicily. Italy Veg Hist Archaeobotany 18(5):371–387. doi: 10.1007/s00334-009-0211-0 CrossRefGoogle Scholar
  47. Piccarreta M, Caldara M, Capolongo D, Boenzi F (2011) Holocene geomorphic activity related to climatic change and human impact in Basilicata, Southern Italy. Geomorphology 128(3–4):137–147. doi: 10.1016/j.geomorph.2010.12.029 CrossRefGoogle Scholar
  48. Porter SC, An Zhisheng (2005) Episodic gullying and paleomonsoon cycles on the Chinese Loess Plateau. Quat Res 64:234–241. doi: 10.1016/j.yqres.2005.06.010 CrossRefGoogle Scholar
  49. Sadori L, Giraudi C, Petitti P, Ramrath A (2004) Human impact at Lago di Mezzano (Central Italy) during the Bronze Age: a multidisciplinary approach. Quat. Int. 113:5–17. doi: 10.1016/S1040-6182(03)00077-6 CrossRefGoogle Scholar
  50. Sanesi G (1965) Geologia e morfologia dell’antico bacino lacustre del Mugello. Boll Soc Geol Ital 84(3):170–252Google Scholar
  51. Sauer D (2010) Approaches to quantify progressive soil development with time in Mediterranean climate—I-use of field criteria. J Plant Nutr Soil Sci 173(6):822–842. doi: 10.1002/jpln.201000136 CrossRefGoogle Scholar
  52. Sauer D, Wagner S, Brückner H, Scarciglia F, Mastronuzzi G (2010) Soil development on marine terraces near Metaponto (gulf of Taranto, southern Italy). Quat Int 222:48–63. doi: 10.1016/j.quaint.2009.09.030 CrossRefGoogle Scholar
  53. Scalenghe R, Zanini E, Nielsen DR (2000) Modeling Soil Development in a Post-Incisive Chronosequence. Soil Sci 165(6):455–462CrossRefGoogle Scholar
  54. Scarciglia F, Pulice I, Robustelli G, Vecchio G (2006) Soil chronosequences on Quaternary marine terraces along the northwestern coast of Calabria (Southern Italy). Quat Int 156–157:133–155. doi: 10.1016/j.quaint.2006.05.027 CrossRefGoogle Scholar
  55. Schwertmann U, Murad E, Schulze DG (1982) Is there Holocene reddening (hematite formation) in soils of axeric temperate areas? Geoderma 27(3):209–223CrossRefGoogle Scholar
  56. Sevink J, Vos P, Westerhoff WE, Stierman A, Kamermans H (1982) A sequence of marine terraces near Latina (Agro Pontino, Central Italy). Catena 9(3–4):361–378Google Scholar
  57. Sevink J, Remmelzwaal A, Spaargaren OC (1984) The soils of southern lazio and adjacent campania. Universiteit van AmsterdamGoogle Scholar
  58. Shakesby RA (2011) Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth Sci Rev 105:71–100. doi: 10.1016/j.earscirev.2011.01.001 CrossRefGoogle Scholar
  59. Sletten R, Ugolini FC (1991) The Role of Proton Donors in Pedogenesis as Revealed by Soil Solution Studies. Soil Sci 151:59–72CrossRefGoogle Scholar
  60. Smith BJ, Whalley WB, Warke PA, Ruffell A (1999) Introduction and background: interpretations of landscape change. In: Smith BJ, Whalley WB, Warke PA (eds) Uplift, Erosion and Stability: Perspectives on Longterm Landscape Development. Geological Society, LondonGoogle Scholar
  61. Terhorst B, Ottner F (2003) Polyciclic Luvisols in Northern Italy: Palaeopedological and clay mineralogical characteristics. Quat Int 106–107:215–231. doi: 10.1016/S1040-6182(02)00174-X CrossRefGoogle Scholar
  62. Tinner W, van Leeuwen JFN, Colombaroli D, Vescovi E, van der Knaap WO, Henne PD, Pasta S, D’Angelo S, La Mantia T (2009) Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily. Italy Quat Sc Rev 28(15–16):1498–1510. doi: 10.1016/j.quascirev.2009.02.001 CrossRefGoogle Scholar
  63. Torrent J, Schwertmann U, Fechter H, Alferez F (1983) Quantitative relationship between soil color and hematite content. Soil Sci 136(6):354–358CrossRefGoogle Scholar
  64. Van Rompaey A, Bazzoffi P, Jones RJA, Montanarella L (2005) Modeling sediment yields in Italian catchments. Geomorphology 65:157–169. doi: 10.1016/j.geomorph.2004.08.006 CrossRefGoogle Scholar
  65. Verheijen FGA, Jones RJA, Rickson RJ, Smith CJ (2009) Tolerable versus actual soil erosion rates in Europe. Earth Sc Rev 94(1–4):23–38CrossRefGoogle Scholar
  66. Vezzoli G (2004) Erosion in the Western Alps (Dora Baltea Basin): 2 quantifying sediment yield. Sedim Geol 171:247–259. doi: 10.1016/j.sedgeo.2004.05.018 Google Scholar
  67. Waters MR, Haynes CV (2001) Late Quaternary arroyo formation and climate change in the American Southwest. Geology 29:399–402. doi: 10.1130/0091-7613 CrossRefGoogle Scholar
  68. Willett SD, Brandon MT (2002) On steady states in mountain belts. Geology 30:175–178. doi: 10.1130/0091-7613 CrossRefGoogle Scholar
  69. Wischmeier WH, Smith DD (1960) A universal soil-loss equation to guide conservation farm planning. Trans 7th Int Congr Soil Sci 418–425Google Scholar
  70. Wischmeier WH, Smith DD (1978) Predicting Rainfall Erosion Losses: a Guide to Conservation Planning. Agriculture Handbook 537, US Government Printing Office, WashingtonGoogle Scholar
  71. Wittmann H, von Blanckenburg F, Kruesmann T, Norton KP, Kubik PW (2007) Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland. J Geophys Res 112:F04010. doi: 10.1029/2006JF000729 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Stefano Carnicelli
    • 1
  • Edoardo A. C.  Costantini
    • 2
  1. 1.Dipartimento di Scienze della TerraUniversità di FirenzeFlorenceItaly
  2. 2.Consiglio per la ricerca e la sperimentazione in agricolturaCRA-ABP, Research centre for Agrobiology and PedologyFlorenceItaly

Personalised recommendations