Skip to main content

How to Utilise the Knowledge of Causal Responses?

  • Chapter
  • First Online:
Physical and Physiological Forest Ecology

Abstract

Our physical and physiological theory provides causal explanations of various phenomena in forests. This causal nature of the theory enables versatile applications in forestry and in the research of the interactions between climate change and forests. We treat the effects of thinnings and whole-tree harvesting on wood production and the responses of forest ecosystem to nitrogen deposition in more detail. The forests react to the increasing CO2 concentration and also to temperature increase generating feedbacks from forests to climate change. The changes in the carbon storages in forest ecosystems and in the emission of volatile organic compounds are evidently the most important feedbacks from forest ecosystems to the climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to the large heat capacity of the oceans, this equilibration time is of the order of centuries.

  2. 2.

    Available from NASA GSFC FTP ftp://climate1.gsfc.nasa.gov/wiscombe/

References

  • Andreae MO, Jones CD, Cox PM (2005) Strong present-day aerosol cooling implies a hot future. Nature 435:1187–1190

    Article  CAS  Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology, 2nd edn. Academic, London

    Google Scholar 

  • BACC Author Team (2008) Assessment of climate change for the Baltic Sea basin, regional climate studies. Springer, Heidelberg

    Google Scholar 

  • Barnola J-M, Raynaud D, Lorius C, Barkov NI (2003) Historical CO2 record from the Vostok ice core. In: Boden TA et al (eds) Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

    Google Scholar 

  • Betts RA, Falloon PD, Goldewijk KK, Ramankutty N (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agric For Meteorol 142:216–233

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  • Boer GJ, Yu B (2003) Climate sensitivity and response. Clim Dyn 20:415–429

    Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Botkin DB, Simpson L (1990) The first statistically valid estimate of biomass for a large region. Biogeochemistry 9:161–174

    Google Scholar 

  • Chen JM, Black TA (1992) Defining leaf area index for non-flat leaves. Plant Cell Environ 15:421–429

    Article  Google Scholar 

  • Colman R (2003) A comparison of climate feedbacks in general circulation models. Clim Dyn 20:865–873

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  CAS  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130

    Article  Google Scholar 

  • Dal Maso M, Kulmala M, Riipinen I, Wagner R, Hussein T, Aalto PP, Lehtinen KEJ (2005) Formation and growth of fresh atmospheric aerosols: eight years of size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ Res 10:323–336

    Google Scholar 

  • Dal Maso M, Sogacheva L, Aalto PP, Riipinen I, Komppula M, Tunved P, Korhonen L, Suur-Uski V, Hirsikko A, Kurtén T, Kerminen V-M, Lihavainen H, Viisanen Y, Hansson H-C, Kulmala M (2007) Aerosol size distribution measurements at four Nordic field stations: identification, analysis and trajectory analysis of new particle formation bursts. Tellus B59:350–361

    Google Scholar 

  • Dawson TP, Curran PJ, Plummer SE (1998) LIBERTY—modelling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens Environ 65:50–60

    Article  Google Scholar 

  • Dentener F (2006) Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. Data set from Oak Ridge National Laboratory, Oak Ridge, Tennessee. http://www.daac.ornl.gov/

  • Ebermayer E (1876) Die gesamte Lehre von der Waldstreu. Springer, Berlin

    Google Scholar 

  • Eriksson H, Karlsson K (1997) Olika gallrings och gödslingsregimens effekter på beståndsutvecklingen baserat på långliggande experiment i tall-och granbestånd i Sverige. SLU, Inst Skogsprodukt Rep 42:1–135

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts RA, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238

    Article  CAS  Google Scholar 

  • Freidenreich SM, Ramaswamy V (1999) A new multiple-band solar radiative parameterization for general circulation models. J Geophys Res 104:31389–31409

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R et al (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Gauthier S, Bergman A, Bergeron Y (1996) Forest dynamics modelling under natural fire cycles: a tool to define natural mosaic diversity for forest management. Environ Monit Assess 39:417–434

    Article  Google Scholar 

  • Groisman PY, Sherstyukov BG, Razuvaev VN, Knight RW, Enloe JG, Stroumentova NS, Whitfield PH, Førland E, Hannsen-Bauer I, Tuomenvirta H, Alexandersson H, Mescherskaya AV, Karl TR (2007) Potential forest fire danger over Northern Eurasia: changes during the 20th century. Glob Planet Change 56:371–386

    Article  Google Scholar 

  • Hagemann S (2002) An improved land surface parameter data set for global and regional climate models. Max-Planck-Institute for Meteorology, Report 336. Hamburg, Germany

    Google Scholar 

  • Hakola H, Laurila T, Hiltunen V, Hellen H, Keronen P (2003) Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmos Environ 37:1623–1634

    Article  CAS  Google Scholar 

  • Hakola H, Tarvainen V, Bäck J, Ranta H, Bonn B, Rinne J, Kulmala M (2006) Seasonal variation of mono- and sesquiterpene emission rates of Scots pine. Biogeosciences 3:93–101

    Article  CAS  Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. Meteorol Monogr 29:130–163

    Google Scholar 

  • Hansen J, Sato M, Ruedy R et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104

    Article  Google Scholar 

  • Harvey LDD (2000) Global warming: the hard science. Pearson Education, Harlow

    Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo J, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Helmisaari H-S, Holt Hanssen K, Jacobson S, Kukkola M, Luiro J, Saarsalmi A, Tamminen P, Tveite B (2011) Logging residue removal after thinning in Nordic boreal forests: long-term impact on tree growth. For Ecol Manag 261:1919–1927

    Article  Google Scholar 

  • Hirsikko A, Laakso L, Hõrrak U, Aalto PP, Kerminen V-M, Kulmala M (2005) Annual and size dependent variation of growth rates and ion concentrations in boreal forest. Boreal Environ Res 10:357–370

    Google Scholar 

  • Holton JR (2004) An introduction to dynamic meteorology. Elsevier Academic Press, New York

    Google Scholar 

  • Houghton JT (1997) Global warming: the complete briefing, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Houghton J (2004) Global warming: the complete briefing. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate Change 2001. The scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95

    Article  Google Scholar 

  • Hyytiäinen K, Tahvonen O, Valsta L (2005) Optimum juvenile density, harvesting, and stand structure in even-aged Scots pine stands. For Sci 51:120–133

    Google Scholar 

  • IPCC (2007) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor MMB, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jansen E, Overpeck J, Briffa KR et al (2007) Paleoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Jin M, Liang S (2006) An improved land surface emissivity parameter for land surface models using global remote sensing observations. J Clim 19:2867–2881

    Article  Google Scholar 

  • Jones PD, Lister DH (2002) The daily temperature record for St. Petersburg (1743–1996). Clim Chang 53:253–267

    Article  Google Scholar 

  • Joshi M, Shine K, Ponater M, Stuber N, Sausen R, Li L (2003) A comparison of climate response to different radiative forcings in three general circulation models: towards an improved metric of climate change. Clim Dyn 20:843–854

    Google Scholar 

  • Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VM (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329:403–408

    Article  CAS  Google Scholar 

  • Jouzel J, Barkov NI, Barnola JM, Bender M, Chappellaz J, Genthon C, Kotlyakov VM, Lipenkov V, Lorius C, Petit JR, Raynaud D, Raisbeck G, Ritz C, Sowers T, Stievenard M, Yiou F, Yiou P (1993) Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364:407–412

    Article  Google Scholar 

  • Jouzel J, Waelbroeck C, Malaize B, Bender M, Petit JR, Stievenard M, Barkov NI, Barnola JM, King T, Kotlyakov VM, Lipenkov V, Lorius C, Raynaud D, Ritz C, Sowers T (1996) Climatic interpretation of the recently extended Vostok ice records. Clim Dyn 12:513–521

    Article  Google Scholar 

  • Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. In: Boden TA et al (eds) Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

    Google Scholar 

  • Kerminen V-M, Kulmala M (2002) Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. J Aerosol Sci 33:609–622

    Article  CAS  Google Scholar 

  • Kiehl JT, Trenberth KE (1997) Earth's annual global mean energy budget. Bull Amer Meteor Soc 78:197–208

    Google Scholar 

  • Kulmala M, Toivonen A, Mäkelä JM, Laaksonen A (1998) Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus 50B:449–463

    CAS  Google Scholar 

  • Kulmala M, Dal Maso M, Mäkelä JM, Pirjola L, Väkevä M, Aalto P, Miikkulainen P, Hämeri K, O’Dowd CD (2001) On the formation, growth and composition of nucleation mode particles. Tellus 53B:479–490

    Google Scholar 

  • Kulmala M, Vehkamäki H, Petäjä T, Dal Maso M, Lauri A, Kerminen V-M, Birmili W, McMurry PH (2004a) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176

    Article  CAS  Google Scholar 

  • Kulmala M, Laakso L, Lehtinen KEJ, Riipinen I, Dal Maso M, Anttila T, Kerminen V-M, Hõrrak U, Vana M, Tammet H (2004b) Initial steps of aerosol growth. Atmos Chem Phys 4:2553–2560

    Article  CAS  Google Scholar 

  • Kulmala M, Suni T, Lehtinen KEJ, Dal Maso M, Boy M, Reissell A, Rannik Ü, Aalto PP, Keronen P, Hakola H, Bäck J, Hoffmann T, Vesala T, Hari P (2004c) A new feedback mechanism linking forests, aerosols, and climate. Atmos Chem Phys 4:557–562

    Article  CAS  Google Scholar 

  • Kurtén T, Kulmala M, Dal Maso M, Suni T, Reissell A, Vehkamäki H, Hari P, Laaksonen A, Viisanen Y, Vesala T (2003) Estimation of different forest-related contributions to the radiative balance using observations in southern Finland. Boreal Environ Res 8:275–285

    Google Scholar 

  • Laakso L, Grönholm T, Kulmala L, Haapanala S, Hirsikko A, Lovejoy ER, Kazil J, Kurtén T, Boy M, Nilsson ED, Sogachev A, Riipinen I, Stratmann F, Kulmala M (2007) Hot-air balloon as a platform for boundary layer profile measurements during particle formation. Boreal Env Res 12:279–294

    Google Scholar 

  • Lemke P, Ren J, Alley R, Allison I, Carrasco J, Flato G, Fuiji Y, Kaser G, Mote P, Thomas R, Zhang T (2007a) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Lemke P, Ren J, Alley R, Allison I, Carrasco J, Flato G, Fuiji Y, Kaser G, Mote P, Thomas R, Zhang T (2007b) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    Article  Google Scholar 

  • Mäkelä JM, Aalto P, Jokinen V, Pohja T, Nissinen A, Palmroth S, Markkanen T, Seitsonen K, Lihavainen H, Kulmala M (1997) Observations of ultrafine aerosol formation and growth in boreal forest. Geophys Res Lett 24:1219–1222

    Article  Google Scholar 

  • Mäkelä JM, Dal Maso M, Pirjola L, Keronen P, Laakso L, Kulmala M, Laaksonen A (2000) Characteristics of the atmospheric particle formation events observed at a boreal forest site in southern Finland. Boreal Environ Res 5:299–313

    Google Scholar 

  • McClatchey RA, Fenn RW, Selby JEA, Volz FE, Garing JS (1971) Optical properties of the atmosphere. Report AFCRL-71-0279. Air Force Geophys Lab, Hanscom Air Force Base, Bedford

    Google Scholar 

  • Meehl GA, Stocker TF, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Moberg A, Bergström H, Krigsman JR, Svanered O (2002) Daily air temperature and pressure series for Stockholm (1756–1998). Clim Chang 53:171–212

    Article  Google Scholar 

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of Northern forests. Proc Natl Acad Sci USA 98:14784–14789

    Article  CAS  Google Scholar 

  • Nakićenović N, Swart R (eds) (2000) Emissions scenarios. A special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Niinemets U, Arneth A, Kuhn U, Monson RK, Penuelas J, Staudt M (2010) The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7:2203–2223

    Article  CAS  Google Scholar 

  • Niinimäki S, Tahvonen O, Mäkelä A (2012) Applying a process-based model in Norway spruce management. For Ecol Manag 265:102–115

    Article  Google Scholar 

  • Nobel PS (2005) Physicochemical & environmental plant physiology, 3rd edn. Academic Press/Elsevier, San Diego

    Google Scholar 

  • Penuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  CAS  Google Scholar 

  • Peterson TC, Vose RS (1997) An overview of the Global Historical Climatology Network temperature database. Bull Am Meteorol Soc 78:2837–2848

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delayque G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  CAS  Google Scholar 

  • Räisänen J (2007) How reliable are climate models? Tellus 59A:2–29

    Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornbleuh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tomkins A (2003) The atmospheric general circulation model ECHAM5, Part I: Model description. Max-Planck-Inst Meteorol Rep 349, Hamburg

    Google Scholar 

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791

    Article  Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson R (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    Article  CAS  Google Scholar 

  • Ross J (1981) The radiation regime and architecture of plant stands. Kluwer Academic, The Hague

    Book  Google Scholar 

  • Sausen R, Barthel K, Hasselman K (1988) Coupled ocean–atmosphere models with flux-correction. Clim Dyn 2:145–163

    Article  Google Scholar 

  • Schultz MG et al (2007) Reanalysis of the tropospheric chemical composition of the past 40 years (RETRO)—a long-term global modelling study of tropospheric chemistry. Final Rep 48/2007, Max Planck Inst Meteorol, Hamburg

    Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New York

    Google Scholar 

  • Smith TM, Reynolds RW (2005) A global merged land and sea surface temperature reconstruction based on historical observations (1880–1997). J Clim 18:2021–2036

    Article  Google Scholar 

  • Smolander S, Stenberg P (2005) Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies. Remote Sens Environ 94:355–363

    Google Scholar 

  • Spracklen DV, Carslaw KS, Kulmala M, Kerminen V-M, Mann GW, Sihto S-L (2006) The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmos Chem Phys 6:5631–5648

    Article  CAS  Google Scholar 

  • Stamnes K, Tsay SC, Wiscombe W, Jayaweera K (1988) A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Optics 27:2502–2509

    Article  CAS  Google Scholar 

  • Stamnes K, Tsay SC, Wiscombe W, Laszlo I (2000) A general-purpose numerically stable computer code for discrete-ordinate-method radiative transfer in scattering and emitting layered media, DISORT Rep v1.1. Stevens Inst Tech, Hoboken

    Google Scholar 

  • Stephens BB, Gurney K, Tans P, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, Aoki S, Machida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M, Shibistova O, Langenfelds RL, Steele LP, Francey RJ, Denning AS (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316:1732–1735

    Article  CAS  Google Scholar 

  • Tarvainen V, Hakola H, Hellen H, Bäck J, Hari P, Kulmala M (2005) Temperature and light dependence of the VOC emissions of Scots pine. Atmos Chem Phys 5:6691–6718

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Tunved P, Hansson H-C, Kerminen V-M, Ström J, Dal Maso M, Lihavainen H, Viisanen Y, Aalto PP, Komppula M, Kulmala M (2006) High natural aerosol loading over boreal forests. Science 312:261–263

    Article  CAS  Google Scholar 

  • US Geological Survey (2001)

    Google Scholar 

  • van Aardenne JA, Dentener FJ, Olivier JGJ, Goldewijk K, Lelieveld J (2001) A 1 deg × 1 deg resolution dataset of historical anthropogenic trace gas emissions for the period 1890–1990. Glob Biogeochem Cycles 15:909–928

    Article  Google Scholar 

  • Vehkamaki H (2006) Classical nucleation theory in multicomponent systems. Springer, Berlin

    Google Scholar 

  • Vesala T, Suni T, Rannik U, Keronen P, Markkanen T, Sevanto S, Grönholm T, Smolander S, Kulmala M, Ilvesniemi H, Ojansuu R, Uotila A, Levula J, Mäkelä A, Pumpanen J, Kolari P, Kulmala L, Altimir N, Berninger F, Nikinmaa E, Hari P (2005) Effect of thinning on surface fluxes in a boreal forest. Glob Biogeochem Cycles 19:GB2001

    Google Scholar 

  • Webb MJ, Senior CA, Sexton DMH, Ingram WJ, Williams KD, Ringer MA, McAvaney BJ, Colman R, Soden BJ, Gudgel R, Knutson T, Emori S, Ogura T, Tsushima Y, Andronova N, Li B, Musat I, Bony S, Taylor KE (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27:17–38

    Article  Google Scholar 

  • Wohlfahrt J, Harrison SP, Braconnot P (2004) Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Clim Dyn 22:223–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pertti Hari , Pertti Hari , Timo Vesala , Jouni Räisänen , Jouni Räisänen , Pertti Hari , Pertti Hari , Jouni Räisänen or Ilona Riipinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hari, P. et al. (2013). How to Utilise the Knowledge of Causal Responses?. In: Hari, P., Heliövaara, K., Kulmala, L. (eds) Physical and Physiological Forest Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5603-8_8

Download citation

Publish with us

Policies and ethics