Skip to main content

Processes in Living Structures

  • Chapter
  • First Online:
Physical and Physiological Forest Ecology

Abstract

Cells are the basic functional units in forest ecosystems. Plants have strong cell wall, formed by cellulose and lignin. Cell membrane isolates the cell from its surroundings, starch acts as storage and enzymes enable synthesis of new compounds. Membrane pumps allow penetration of cell membrane and pigments capture of light energy. We call enzymes, membrane pumps and pigments as functional substances. The biochemical regulation system changes the concentrations and activities of the functional substances: In summer, metabolism is very active, but in winter, vegetation is dormant and tolerates low temperatures. The action of the biochemical regulation system generates emergent regularities in the functional substances, called the state of the functional substances. The effect of environmental factors on metabolism is built in the complex chain of enzymes, membrane pumps and pigments, acting in each metabolic task. The process-specific state of functional substances and the environmental factors determine the rate of each metabolic process. Microbes have dominating role in the soil. Together with soil fauna, microbes break down macromolecules with extracellular enzymes to small molecules that can penetrate the microbial cell membrane through membrane pumps. The microbial metabolism utilises the small carbon-rich molecules for the energy needs, growth and synthesis of the extracellular enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Da = Dalton, the unified atomic mass unit based on the mass of a 12C atom. 1 kDa = 1.66·10–24 g. Also known as amu.

  2. 2.

    Global Leaf Area Index Data from Field Measurements, 1932–2000 http://daac.ornl.gov/VEGETATION/lai_des.html

References

  • Aalto T, Juurola E (2001) Parametrization of a biochemical CO2 exchange model for birch (Betula pendula Roth.). Boreal Environ Res 6:53–64

    CAS  Google Scholar 

  • Aalto T, Hari P, Vesala T (2002) Comparison of an optimal regulation model and biochemical model in explaining CO2 exchange in field conditions. Silva Fenn 36:615–623

    Google Scholar 

  • Acioli-Santos B, Vieira HEE, Lima CEP, Maia LC (2011) The molecular ectomycorrhizal fungus essence in association: a review of differentially expressed fungal genes during symbiosis formation. In: Rai M, Varma A (eds) Diversity and biotechnology of ectomycorrhizae, vol 25, Soil biology. Springer, Berlin

    Chapter  Google Scholar 

  • Adams WW III, Barker DH (1998) Seasonal changes in xanthophyll cycle-dependent energy dissipation in Yucca glauca Nuttall. Plant Cell Environ 21:501–511

    Article  CAS  Google Scholar 

  • Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York

    Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107

    Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  Google Scholar 

  • Aitken SN, Hannerz M (2001) Genecology and gene resource management strategies for conifer cold hardiness. In: Bigras FJ, Columbo SJ (eds) Conifer cold hardiness. Kluwer, Dordrecht

    Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    Article  CAS  Google Scholar 

  • Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends in Plant Sci 6:317–326

    Article  CAS  Google Scholar 

  • Amthor JS (1994) Plant respiratory responses to the environment and their effects on the carbon balance. In: Wilkinson RE (ed) Plant–environment interactions. Marcel Dekker, New York

    Google Scholar 

  • Angeles G, Bond B, Boyer JS et al (2004) Letters. The cohesion-tension theory. New Phytol 163:447–449

    Article  Google Scholar 

  • Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:55–72

    Article  Google Scholar 

  • Arena C, Vitale L, Virzo De Santo A (2008) Paraheliotropism in Robinia pseudoacacia L.: an efficient strategy to optimise photosynthetic performance under natural environmental conditions. Plant Biol 10:194–201

    Article  CAS  Google Scholar 

  • Armour H, Straw N, Day K (2003) Interactions between growth, herbivory and long-term foliar dynamics of Scots pine. Trees 17:70–80

    Article  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  Google Scholar 

  • Bachmann J, van der Ploeg RR (2002) A review on recent developments in soil water retention theory: interfacial tension and temperature effects. J Plant Nutr Soil Sci 165:468–478

    Article  CAS  Google Scholar 

  • Bachmann J, Deurer M, Arye G (2007) Modeling water movement in heterogeneous water-repellent soil: 1. Development of a contact angle-dependent water-retention model. Vadose Zone J 6:436–445

    Article  Google Scholar 

  • Baggs EM, Cadisch G, Stevenson M, Pihlatie M, Regar A, Cook H (2003) Nitrous oxide emissions resulting from interactions between cultivation technique, residue quality and fertiliser application. Plant Soil 254:361–370

    Article  CAS  Google Scholar 

  • Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton

    Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins I (ed) Progress in photosynthesis research, vol 4. Martinus-Nijhoff, Dordrecht

    Google Scholar 

  • Bannan MV (1941) Variability in wood structure in roots of native Ontario conifers. Bull Torrey Bot Club 68:73–194

    Article  Google Scholar 

  • Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 12:61–66

    Article  Google Scholar 

  • Barrett AJ (1986) An introduction to the proteinases. In: Barrett AJ, Salvesen G (eds) Proteinase inhibitors. Elsevier, Amsterdam

    Google Scholar 

  • Barton CVM, North PRJ (2001) Remote sensing of canopy light use efficiency using the photochemical reflectance index – model and sensitivity analysis. Remote Sens Environ 78:264–273

    Article  Google Scholar 

  • Beaudet M, Messier C (1998) Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient. Can J For Res 28:1007–1015

    Article  Google Scholar 

  • Bendall DS (2006) Photosynthesis: light reactions. Encyclopedia of life sciences. Wiley, New York

    Google Scholar 

  • Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447

    Article  CAS  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manage 133:13–22

    Article  Google Scholar 

  • Berg B, Dise N (2004) Calculating the long-term stable nitrogen sink in northern European forests. Acta Oecol 26:15–21

    Article  Google Scholar 

  • Berg B, Booltink H, Breymeyer A, Ewertson A, Gallardo A, Holm B, Johansson M-B, Koivuoja S, Meentemeyer V, Nyman P, Olofsson J, Petterson A-S, Reurslag A, Staaf H, Staaf I, Uba L (1991) Data on needle litter decomposition and soil climate as well as site characteristics for some coniferous forest sites. Part 2. Decomposition data, 2nd edn. Swedish University of Agricultural Sciences, rep 42

    Google Scholar 

  • Bergh J, McMurtrie RE, Linder S (1998) Climatic factors controlling the productivity of Norway spruce: a model based analysis. For Ecol Manage 110:127–139

    Article  Google Scholar 

  • Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ 26:1419–1430

    Article  CAS  Google Scholar 

  • Berninger F, Nikinmaa E (1994) Geographical variation in the foliage mass – wood cross-sectional area ratios in young Scots pine stands. Can J For Res 24:2263–2268

    Article  Google Scholar 

  • Betsche T (1983) Aminotransfer from alanine and glutamate to glycine and serine during photorespiration in oat leaves. Plant Physiol 71:961–965

    Article  CAS  Google Scholar 

  • Beyer L (1996) The chemical composition of soil organic matter in classical humic compound fractions and in bulk samples – a review. Z Pflanz Bodenkunde 159:527–539

    Article  CAS  Google Scholar 

  • Beyer L, Vogt B, Kobbemann C (1996) A simple wet chemical extraction procedure to characterize soil organic matter (SOM): 2. Reproducibility and verification. Commun Soil Sci Plan 27:2229–2241

    Article  CAS  Google Scholar 

  • Bilger W, Bjorkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  Google Scholar 

  • Björkman O (1981a) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12A. Springer, Heidelberg

    Google Scholar 

  • Björkman O (1981b) The response of photosynthesis to temperature. In: Grace J, Ford ED, Jarvis PG (eds) Plants and their atmospheric environment. The 21st symposium of the British Ecological Society, Edinburgh. Blackwell, Oxford

    Google Scholar 

  • Blume H-P, Brümmer GW, Schwertmann U, Horn R, Kögel-Knabner I, Stahr K, Auerswald K, Beyer L, Hartmann A, Litz N, Scheinost A, Stanjek H, Welp G, Wilke B-M (2002) Organische Substanz und Bodenbiologie. In: Scheffer/Schachtschabel. Lehrbuch der Bodenkunde, 15th. Aufl. Spektrum, Heidelberg

    Google Scholar 

  • Blume H-P, Brümmer GW, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2010a) Organische Bodensubstanz. In: Scheffer/Schachtschabel. Lehrbuch der Bodenkunde, 16. Aufl. Spektrum, Heidelberg

    Google Scholar 

  • Blume H-P, Brümmer GW, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2010b) Bodenorganismen und ihr Lebensraum. In: Scheffer/Schachtschabel. Lehrbuch der Bodenkunde, 16. Aufl. Spektrum, Heidelberg

    Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  • Bothe H, Jost G, Schloter M, Ward BB, Witzel K-P (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24:673–690

    Article  CAS  Google Scholar 

  • Bowes G (1991) Growth at elevated CO2. Photosynthetic responses mediated through Rubisco. Plant Cell Environ 14:795–806

    Article  CAS  Google Scholar 

  • Boyer JS, Silk WK, Watt M (2010) Path of water for root growth. Funct Plant Biol 37:1105–1116

    Article  Google Scholar 

  • Bremner JM (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49:7–16

    Article  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Britto DT, Glass ADM, Kronzucker HJ, Siddiqi MY (2001) Cytosolic concentrations and transmembrane fluxes of NH +4 /NH3. An evaluation of recent proposals. Plant Phys 125:523–526

    Article  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Google Scholar 

  • Brooks A, Farquhar GD (1985) Effect of temperature on the CO2-O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light: estimates from gas exchange measurements on spinach. Planta 165:397–406

    Article  CAS  Google Scholar 

  • Brownlee C (2001) The long and the short of stomatal density signals. Trends Plant Sci 6:441–442

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (eds) (2000) Biochemistry and molecular biology of plants. American Society for Plant Physiology, Rockville

    Google Scholar 

  • Buckley TN (2008) The role of stomatal acclimation in modelling tree adaptation to high CO2. J Exp Bot 59:1951–1961

    Article  CAS  Google Scholar 

  • Bunce JA (2000) Acclimation to temperature of the response of photosynthesis to increased carbon dioxide concentration in Taraxacum officinale. Photosynth Res 64:89–94

    Article  CAS  Google Scholar 

  • Buol SW, Hole FD, McCracken RJ, Southard RJ (1997) Soil genesis and classification, 4th edn. Iowa State University Press, Ames

    Google Scholar 

  • Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61–74

    Article  CAS  Google Scholar 

  • Burdon J (2001) Are the traditional concepts of the structures of humic substances realistic? Soil Sci 166:752–769

    Article  CAS  Google Scholar 

  • Butler WL, Kitajima M (1975) Fluorescence quenching in photosystem II of chloroplasts. Biochim Biophys Acta 376:116–125

    Article  CAS  Google Scholar 

  • Cairney JWG (2011) Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil 344:51–71

    Article  CAS  Google Scholar 

  • Campbell BD, Grime JP, Mackey JML (1991) A trade-off between scale and precision in resource foraging. Oecologia 87:532–538

    Article  Google Scholar 

  • Canham CD (1985) Suppression and release during canopy recruitment in Acer saccharum. Bull Torrey Bot Club 112:134–145

    Article  Google Scholar 

  • Caraglio Y, Barthélémy D (1997) Revue critique des termes relatifs à la croissance et à la ramification des tiges des végétaux vasculaires. In: Bouchon J, de Reffye P, Barthélémy D (eds) Modélisation et simulation de l’architecture des végétaux. INRA Édit, Versailles

    Google Scholar 

  • Casper BB, Schenk HJ, Jackson RB (2003) Defining a plant’s belowground zone of influence. Ecology 84:2313–2321

    Article  Google Scholar 

  • Ceulemans R, Mousseau M (1994) Effects of elevated atmospheric CO2 on woody plants. New Phytol 127:425–446

    Article  Google Scholar 

  • Chalot M, Javelle A, Blaudez D, Lambilliote R, Cooke R, Sentenac H, Wipf D, Botton B (2002) An update on nutrient transport processes in ectomycorrhizas. Plant Soil 244:165–175

    Article  CAS  Google Scholar 

  • Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266

    Article  CAS  Google Scholar 

  • Chaparro-Suarez IG, Meixner FX, Kesselmeie J (2011) Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture. Atmos Environ 45:5742–5750

    Article  CAS  Google Scholar 

  • Chapuis-Lardy L, Wrage N, Metay A, Chotte J-L, Bernoux M (2007) Soils, a sink for N2O? A review. Glob Change Biol 13:1–17

    Article  Google Scholar 

  • Chen HH, Li PH (1978) Interactions of low temperature, water stress, and short days in the induction of stem frost hardiness in red osier dogwood. Plant Physiol 62:833–835

    Article  CAS  Google Scholar 

  • Chitnis PR (2001) Photosystem I: Function and Physiology. Annu Rev Plant Physiol Plant Mol Biol 52:593–626

    Article  CAS  Google Scholar 

  • Christensen-Dalsgaard KK, Ennos AR, Fournier M (2008) Are radial changes in vascular anatomy mechanically induced or an ageing process? Evidence from observations on buttressed tree root systems. Trees 22:543–550

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ 22:1–13

    Article  Google Scholar 

  • Chuine I, Kramer K, Hänninen H (2003) Plant development models. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer, Dordrecht

    Google Scholar 

  • Clapham D, Ekberg I, Little CHA, Savolainen O (2001) Molecular biology of conifer frost tolerance and potential applications to tree breeding. In: Bigras FJ, Columbo SJ (eds) Conifer cold hardiness. Kluwer, Dordrecht

    Google Scholar 

  • Collatz GJ, Ball JT, Givet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136

    Article  Google Scholar 

  • Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–538

    Article  Google Scholar 

  • Conen F, Neftel A (2007) Do increasingly depleted δ 15N values of atmospheric N2O indicate a decline in soil N2O reduction? Biogeochemistry-US 82:321–326

    Article  CAS  Google Scholar 

  • Corey AT, Logsdon SD (2005) Limitations of the chemical potential. Soil Sci Soc Am J 69:976–982

    Article  CAS  Google Scholar 

  • Cowan IR (1977) Stomatal behaviour and environment. Adv Bot Res 4:117–228

    Article  Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. In: Jennings DH (ed) Integration of activity in the higher plant. Cambridge University Press, Cambridge

    Google Scholar 

  • Coyne MS (1999) Soil microbiology: an exploratory approach. Delmar Publishers, Albany

    Google Scholar 

  • Dahl E, Mork E (1959) Om sambandet mellom temperatur, ånding og vekst hos gran, Picea abies (L.) Karst. Medd Norske Skogforsøksvesen 53:83–93

    Google Scholar 

  • Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Davidson EA (1993) Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. In: Oremland, R.S. (ed.) Biogeochemistry of global change radiatively active trace gases. Chapman & Hall, New York, USA, p. 369–386

    Chapter  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Review. Soil Biol Biochem 33:853–866

    Article  Google Scholar 

  • DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    Article  CAS  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Ebbert V, Mellman DL, Mueh KE, Schaffer L, Funk C, Zarter CR, Adamska I, Jansson S, Adams WW III (2006) Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiol Plantarum 127:670–680

    Article  CAS  Google Scholar 

  • den Camp HJMO, Kartal B, Guven D, van Niftrik LAMP, Haaijer SCM, van der Star WRL, van de Pas-Schoonen KT, Cabezas A, Ying Z, Schmid MC, Kuypers MMM, van de Vossenberg J, Harhangi HR, Picioreanu C, van Loosdrecht MCM, Kuenen JG, Strous M, Jetten MSM (2006) Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochem Soc Trans 34:17–178

    Article  Google Scholar 

  • Derenne S, Largeau C (2001) A review of some important families of refractory macromolecules: composition, origin and fate in soils and sediments. Soil Sci 166:833–847

    Article  CAS  Google Scholar 

  • Dibb JE, Arsenault M, Peterson MC, Honrath RE (2002) Fast nitrogen oxide photochemistry in Summit, Greenland snow. Atmos Environ 36:2501–2511

    Article  CAS  Google Scholar 

  • Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Phys 48:609–639

    Article  CAS  Google Scholar 

  • Eamus D, Jarvis P (1989) The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv Ecol Res 19:1–55

    Article  Google Scholar 

  • Edsberg E (2000) The quantitative influence of enchytraeids (Oligochaeta) and microarthropods on decomposition of coniferous raw humus in microcosms. Pedobiologia 44:132–147

    Article  Google Scholar 

  • Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102

    Article  CAS  Google Scholar 

  • Ehleringer J (1981) Leaf absorptances of Mohave and Sonoran desert plants. Oecologia 49:366–370

    Article  Google Scholar 

  • Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216:1–30

    Article  CAS  Google Scholar 

  • Einsle O, Kroneck PMH (2004) Structural basis of denitrification. Biol Chem 385:875–883

    Article  CAS  Google Scholar 

  • Endo T, Shikanai T, Takabayashi A, Asada K, Sato F (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett 457:5–8

    Article  CAS  Google Scholar 

  • Ensminger I, Sveshnikov D, Campbell DA, Funk C, Jansson S, Lloyd J, Shibistova O, Öquist G (2004) Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob Change Biol 10:995–1008

    Article  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    Article  CAS  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley, Holboken

    Book  Google Scholar 

  • Fall R (2003) Abundant oxygenates in the atmosphere: a biochemical perspective. Chem Rev 103:4941–4951

    Article  CAS  Google Scholar 

  • Farley RA, Fitter AH (1999) The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol 87:849–859

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Fayle DCF (1968) Radial growth in tree roots; distribution, timing, anatomy. Technical report 9, University of Toronto

    Google Scholar 

  • Fernandez MD, Pieters A, Donoso C, Tezara W, Azkue M, Herrera C, Rengifo E, Herrera A (1998) Effects of a natural source of very high CO2 concentration on the leaf gas exchange, xylem water potential and stomatal characteristics of plants of Spatiphylum cannifolium and Bauhinia multinervia. New Phytol 138:689–697

    Article  Google Scholar 

  • Filella I, Porcar-Castell A, Munné-Bosch S, Bäck J, Garbulsky M, Peñuelas J (2009) PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int J Remote Sens 30:4443–4455

    Article  Google Scholar 

  • Finér L, Messier C, De Grandpré L (1997) Fine-root dynamics in mixed boreal conifer – broad-leafed forest stands at different successional stages after fire. Can J For Res 27:304–314

    Article  Google Scholar 

  • Fitter AH (1991) The ecological significance of root system architecture: an economic approach. In: Atkinson D (ed) Plant root growth. An ecological perspective. Blackwell, Oxford

    Google Scholar 

  • Flexas J, Briantais J-M, Cerovic Z, Medrano H, Moya I (2000) Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system. Remote Sens Environ 73:283–297

    Article  Google Scholar 

  • Francis CA, Beman JM, Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. Minireview. ISME J 1:19–27

    Article  CAS  Google Scholar 

  • Frasier R, Ullah S, Moore TR (2010) Nitrous oxide consumption potentials of well-drained forest soils in southern Quebec, Canada. Geomicrobiol J 27:53–60

    Article  CAS  Google Scholar 

  • Fry SC (2001) Plant cell walls. In: Encyclopedia of life sciences. Wiley Online Library, Chichester. www.els.net

  • Fuchigami LH, Weiser CJ, Kobayashi K, Timmis R, Gusta LV (1982) A degree growth stage (°GS) model and cold acclimation in temperate woody plants. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress. Mechanisms and crop implications, vol 2. Academic, New York

    Google Scholar 

  • Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. Mededelingen van de Landbouwhogeschool te Wageningen 59:1–68

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  Google Scholar 

  • Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectra lindex that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44

    Article  Google Scholar 

  • Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501

    Article  Google Scholar 

  • Garbulsky MF, Peñuelas J, Papale D, Filella I (2008) Remote estimation of carbon dioxide uptake by a Mediterranean forest. Glob Change Biol 14:2860–2867

    Article  Google Scholar 

  • Garrett PW, Zahner R (1973) Fascicle density and needle growth responses of red pine to water supply over two seasons. Ecology 54:1328–1334

    Article  Google Scholar 

  • Geßler A, Rienks M, Rennenberg H (2002) Stomatal uptake and cuticular adsorption contribute to dry deposition of NH3 and NO2 to needles of adult spruce (Picea abies) trees. New Phytol 156:179–194

    Article  Google Scholar 

  • Geiger D (2011) Plant sucrose transporters from a biophysical point of view. Mol Plant 4:395–406

    Article  CAS  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Ghashghaie J, Cornic G (1994) Effect of temperature on partitioning of photosynthetic electron flow between CO2 assimilation and O2 reduction and the CO2/O2 specificity of Rubisco. J Appl Physiol 143:643–650

    CAS  Google Scholar 

  • Gielen B, Jach ME, Ceulemans R (2000) Effects of season, needle age and elevated atmospheric CO2 on chlorophyll fluorescence parameters and needle nitrogen concentration in Scots pine (Pinus sylvestris). Photosynthetica 38:13–21

    Article  CAS  Google Scholar 

  • Givnish TJ (1985) On the use of optimality arguments. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Givnish TJ (1995) Plant stems: biomechanical adaptation for energy capture and influence on species distributions. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic, San Diego

    Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    Article  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bückling H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  Google Scholar 

  • Greacen EL, Oh JS (1972) Physics of root growth. Nat New Biol 235:24–25

    CAS  Google Scholar 

  • Greer DH (1983) Temperature regulation of the development of frost hardiness in Pinus radiate D. Don. Aust J Plant Physiol 10:539–547

    Article  Google Scholar 

  • Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12

    Article  Google Scholar 

  • Grime JP (2002) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Groffman P (1991) Ecology of nitrification and denitrification in soil evaluated at scales relevant to atmospheric chemistry. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Gross KL, Pregitzer KS, Burton AJ (1995) Spatial variation in nitrogen availability in three successional plant communities. J Ecol 83:357–367

    Article  Google Scholar 

  • Gunderson CA, Wullschleger SD (1994) Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective. Photosynth Res 39:369–388

    Article  CAS  Google Scholar 

  • Häkkinen R (1999) Analysis of bud-development theories based on long-term phenological and air temperature time series: application to Betula sp. leaves. Finnish Forest Research Institute, Research paper 754

    Google Scholar 

  • Häkkinen R, Linkosalo T, Hari P (1995) Methods for combining phenological time series: application to bud burst in birch (Betula pendula) in Central Finland for the period 1896–1955. Tree Physiol 15:721–726

    Article  Google Scholar 

  • Häkkinen R, Linkosalo T, Hari P (1998) Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiol 18:707–712

    Article  Google Scholar 

  • Hänninen H (1995) Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology. Can J Bot 73:183–199

    Article  Google Scholar 

  • Hänninen H (2006) Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26:889–898

    Article  Google Scholar 

  • Hänninen H, Kramer K (2007) A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fenn 41:167–205

    Google Scholar 

  • Haimi J, Laamanen J, Penttinen R, Räty M, Koponen S, Kellomäki S, Niemelä P (2005) Impacts of elevated CO2 and temperature on the soil fauna of boreal forests. Appl Soil Ecol 30:104–112

    Article  Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, Berlin

    Book  Google Scholar 

  • Hänninen H (1990) Modelling bud dormancy release in trees from cool and temperate regions. Acta For Fenn 213:1–47

    Google Scholar 

  • Hari P (1972) Physiological stage of development in biological models of growth and maturation. Ann Bot Fenn 9:107–115

    Google Scholar 

  • Hari P, Häkkinen R (1991) The utilization of old phenological time series of budburst to compare models describing annual cycles of plants. Tree Physiol 8:281–287

    Article  Google Scholar 

  • Hari P, Mäkelä A (2003) Annual pattern of photosynthesis of Scots pine in the boreal zone. Tree Physiol 23:145–155

    Article  Google Scholar 

  • Hari P, Leikola M, Räsänen P (1970) A dynamic model of the daily high increment of plants. Ann Bot Fenn 7:375–378

    Google Scholar 

  • Hari P, Heikinheimo P, Mäkelä A, Kaipiainen L, Korpilahti E, Salmela J (1986) Trees as a water transport system. Silva Fenn 20:205–210

    Google Scholar 

  • Hari P, Raivonen M, Vesala T, Munger JW, Pilegaard K, Kulmala M (2003) Ultraviolet light and leaf emission of NO x . Nature 422:134

    Article  CAS  Google Scholar 

  • Harju AM, Venäläinen M, Anttonen S, Viitanen H, Kainulainen P, Saranpää P, Vapaavuori E (2003) Chemical factors affecting the brown-rot decay resistance of Scots pine heartwood. Trees 17:263–268

    CAS  Google Scholar 

  • Harper JL, Jones M, Sackville-Hamilton NR (1991) The evolution of roots and the problems of analysing their behaviour. In: Atkinson D (ed) Plant root growth. An ecological perspective. Blackwell, Oxford

    Google Scholar 

  • Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8:244–262

    Article  CAS  Google Scholar 

  • He J-Z, Shen J-P, Zhang L-M, Zhu Y-G, Zheng Y-M, Xu M-G, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  CAS  Google Scholar 

  • Helmisaari H (1992) Nutrient retranslocation within the foliage of Pinus sylvestris. Tree Physiol 10:45–58

    Article  CAS  Google Scholar 

  • Hendrickson L, Furbank RT, Chow WS (2004) A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth Res 82:73–81

    Article  CAS  Google Scholar 

  • Hikosaka K, Hirose T (1998) Leaf and canopy photosynthesis of C3 plants at elevated CO2 in relation to optimal partitioning of nitrogen among photosynthetic components: theoretical prediction. Ecol Model 106:247–259

    Article  CAS  Google Scholar 

  • Hilker T, Coops NC, Wulder MA, Black TA, Guy RD (2008a) The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements. Sci Total Environ 404:411–423

    Article  CAS  Google Scholar 

  • Hilker T, Coops NC, Hall FG, Black TA, Wulder MA, Nesic Z, Krishnan P (2008b) Separating physiologically and directionally induced changes in PRI using BRDF models. Remote Sens Environ 112:2777–2788

    Article  Google Scholar 

  • Hill CA (1971) Vegetation: a sink for atmospheric pollutants. J Air Pollut Control Assoc 21:341–346

    Article  CAS  Google Scholar 

  • Hillel D (1998) Introduction to environmental soil physics. Academic, San Diego

    Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root mediated physical and chemical processes. New Phytol 168:293–303

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hishi T (2007) Heterogeneity of individual root within the fine root architecture: causal links between physiological and ecosystem functions. J For Res 12:126–133

    Article  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Hoefnagel MHN, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. BBA-Bioenergetics 1366:235–255

    Article  CAS  Google Scholar 

  • Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees Struct Funct 20:67–78

    Article  Google Scholar 

  • Hölttä T, Mencuccini M, Nikinmaa E (2009) Linking phloem function to structure: analysis with a coupled xylem–phloem transport model. J Theor Biol 259:325–337

    Article  Google Scholar 

  • Holmes MG, Keiller DR (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ 25:85–93

    Article  CAS  Google Scholar 

  • Horn HS (1971) The adaptive geometry of trees. Princeton University Press, Princeton

    Google Scholar 

  • Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373

    Article  CAS  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  CAS  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001. The scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Hsiao TC, Xu L-K (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616

    Article  CAS  Google Scholar 

  • Huhta V, Hyvönen R, Kaasalainen P, Koskenniemi A, Muona J, Mäkelä I, Sulander M, Vilkamaa P (1986) Soil fauna of Finnish coniferous forests. Ann Zool Fenn 23:345–360

    Google Scholar 

  • Huhta V, Persson T, Setälä H (1998) Functional implications of soil fauna diversity in boreal forests. Appl Soil Ecol 10:277–288

    Article  Google Scholar 

  • Huner NPA, Öquist G (2003) Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht

    Google Scholar 

  • Ilomäki S, Mäkelä A, Nikinmaa E (2003) Crown rise due to competition drives biomass allocation in silver birch (Betula pendula L.). Can J For Res 33:2395–2404

    Article  Google Scholar 

  • Ilvesniemi H, Liu C (2001) Biomass distribution in a young Scots pine stand. Boreal Environment Research 6:3–8

    Google Scholar 

  • Isayenkov S, Isner JC, Maathuis FJM (2010) Vacuolar ion channels: roles in plant nutrition and signalling. FEBS Lett 584:1982–1988

    Article  CAS  Google Scholar 

  • Jach ME, Ceulemans R (2000) Effects of season, needle age and elevated atmospheric CO2 on photosynthesis in Scots pine (Pinus sylvestris). Tree Physiol 20:145–157

    Article  CAS  Google Scholar 

  • Jackson RB, Caldwell MM (1993) Geostatistical patterns of soil heterogeneity around individual perennial plants. J Ecol 81:683–692

    Article  Google Scholar 

  • Jarvis AJ, Mansfield TA, Davies WJ (1999) Stomatal behaviour, photosynthesis and transpiration under rising CO2. Plant Cell Environ 22:639–648

    Article  CAS  Google Scholar 

  • Johnson DA, Richards RA, Turner NC (1983) Yield, water and related characteristics in dryland environments, and its relations, gas exchange, and surface reflectance or near-isogenic wheat lines differing in glaucousness. Crop Sci 23:318–325

    Article  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants – an important N uptake pathway? Soil Biol Biochem 37:413–423

    Article  CAS  Google Scholar 

  • Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612

    Article  Google Scholar 

  • Jongsma M, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 43:885–895

    Article  CAS  Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161:308–313

    Article  CAS  Google Scholar 

  • Jurgens G, Lindstrom K, Saano A (1997) Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol 63:803–805

    CAS  Google Scholar 

  • Juurola E (2003) Biochemical acclimation patterns of Betula pendula and Pinus sylvestris seedling to elevated carbon dioxide concentration. Tree Physiol 23:85–95

    Article  CAS  Google Scholar 

  • Juurola E (2005) Photosynthesis, CO2 and temperature – an approach to analyse the constraints to acclimation of trees to increasing CO2 concentration. Dissertation, University of Helsinki

    Google Scholar 

  • Kaiser E-A, Kohrs K, Kücke M, Schnug E, Heinemeyer O, Munch JC (1998) Nitrous oxide release from arable soil: importance of N-fertilization, crops and season. Soil Biol Biochem 30:1553–1563

    Article  CAS  Google Scholar 

  • Kanninen M, Hari P, Kellomäki S (1982) A dynamic model for above ground growth of dry matter production in a forest community. J Appl Ecol 19:465–476

    Article  Google Scholar 

  • Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Kellomäki S, Oker-Blom P (1983) Canopy structure and light climate in a young Scots Pine stand. Silva Fenn 17:1–21

    Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic Volatile Organic Compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Killham K (1990) Nitrification in coniferous forest soils. Plant Soil 128:31–44

    Article  CAS  Google Scholar 

  • Killham K (1994) Soil ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kimball BA, Idso SB, Johnson S, Rillig MC (2007) Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Glob Change Biol 13:2171–2183

    Article  Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    CAS  Google Scholar 

  • Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31:609–625

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  CAS  Google Scholar 

  • Kolari P, Lappalainen HK, Hänninen H, Hari P (2007) Relationship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone. Tellus 59B:542–552

    CAS  Google Scholar 

  • Kollist H, Jossier M, Laanemets K, Thomine S (2011) Anion channels in plant cells. FEBS J 278:4277–4292

    Article  CAS  Google Scholar 

  • Koski V, Sievänen R (1985) Timing of growth cessation in relation to the variations in the growing season. In: Tigerstedt PMA, Puttonen P, Koski V (eds) Crop physiology of forest trees. Helsinki University Press, Helsinki

    Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    Article  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Kramer K (1994a) Selecting a model to predict the onset of growth of Fagus sylvatica. J Appl Ecol 31:172–181

    Article  Google Scholar 

  • Kramer K (1994b) A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany. Plant Cell Environ 17:367–377

    Article  Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004a) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004b) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol 42:313–349

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1996) Kinetics of NH +4 influx in spruce. Plant Physiol 110:773–779

    CAS  Google Scholar 

  • Kühn C, Grof CPL (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13:288–298

    Article  CAS  Google Scholar 

  • Küppers M (1989) Ecological significance of above ground patterns in woody plants; a question of cost-benefit relationships. Tree 4:375–379

    Google Scholar 

  • Kuuluvainen T (2002) Natural variability of forests as a reference for restoring and managing biological diversity in boreal Fennoscandia. Silva Fenn 36:97–125

    Google Scholar 

  • Kuuluvainen T, Pukkala T (1987) Effect of crown shape and tree distribution on the spatial distribution of shade. Agric For Meteorol 40:215–231

    Article  Google Scholar 

  • Kuuluvainen T, Pukkala T (1989) Simulation of within-tree and between-tree shading of direct radiation in a forest canopy: effect of crown shape and sun elevation. Ecol Model 49:89–100

    Article  Google Scholar 

  • Laakso J, Setälä H (1999) Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87:57–64

    Article  Google Scholar 

  • Lam P, Jensen MM, Lavik G, McGinnis DF, Müller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA 104:7104–7109

    Article  CAS  Google Scholar 

  • Landsberg JJ (1974) Apple fruit bud development and growth; analysis and an empirical model. Ann Bot (Lond) 38:1013–1023

    Google Scholar 

  • Lawlor DW, Delgado E, Habash DZ, Driscoll SP, Mitchell VJ, Mitchell RAC, Parry MAJ (1995) Photosynthetic acclimation of winter wheat to elevated CO2 and temperature. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 5. Kluwer, Dordrecht

    Google Scholar 

  • Lee KE, Foster RC (1991) Soil fauna and soil structure. Aust J Soil Res 29:745–775

    Article  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90

    Article  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  Google Scholar 

  • Leinonen I (1996) A simulation model for the annual frost hardiness and freeze damage of Scots pine. Ann Bot (Lond) 78:687–693

    Article  Google Scholar 

  • Lerdau MT, Munger JW, Jacob DJ (2000) The NO2 flux conundrum. Science 298:2291–2293

    Article  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  CAS  Google Scholar 

  • Leverenz JW, Öquist G (1987) Quantum yields of photosynthesis at temperatures between –2°C and 35°C in cold-tolerant C3 plant (Pinus sylvestris) during the course of one year. Plant Cell Environ 10:287–295

    Article  Google Scholar 

  • Lew RR (2011) How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 9:509–518

    Article  CAS  Google Scholar 

  • Lewis JD, Tissue DT, Strain BD (1996) Seasonal response of photosynthesis to elevated CO2 in loblolly pine (Pinus taeda L.) over two growing seasons. Glob Change Biol 2:103–114

    Article  Google Scholar 

  • Liberloo M, Tulva I, Raïm O, Kull O, Ceulemans R (2007) Photosynthetic stimulation under long-term CO2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFASE). New Phytol 173:537–549

    Article  CAS  Google Scholar 

  • Liebhold A, Elkinton J, Williams D, Muzika RM (2000) What causes outbreaks of the gypsy moth in North America? Popul Ecol 42:257–266

    Article  Google Scholar 

  • Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248:181–190

    Article  CAS  Google Scholar 

  • Lin J, Jach ME, Ceulemans R (2001) Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytol 150:665–674

    Article  Google Scholar 

  • Linder S, Troeng E (1980) Photosynthesis and transpiration of 20-year-old Scots pine. In Persson T (ed) Structure and functioning of northern coniferous forests – an ecosystem study. Ecol Bull 32:165–181. Stockholm

    Google Scholar 

  • Linkosalo T, Lappalainen HK, Hari P (2008) A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol 28:1873–1882

    Article  Google Scholar 

  • Lloyd J, Shibistova O, Zolotoukhine D, Kolle O, Arneth A, Wirth C, Styles JM, Tchebakova NM, Schulze ED (2002) Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus 54B:590–610

    CAS  Google Scholar 

  • Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentration: has its importance been underestimated? Plant Cell Environ 14:729–739

    Article  CAS  Google Scholar 

  • Longeutaud F, Mothe F, Leban J-M, Mäkelä A (2006) Picea abies sapwood width: variations within and between trees. Scand J For Res 21:41–53

    Article  Google Scholar 

  • Loque D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305

    Article  CAS  Google Scholar 

  • Lundmark T, Bergh J, Strand M, Koppel A (1998) Seasonal variation of maximum photochemical efficiency in boreal Norway spruce stands. Trees 13:63–67

    Article  Google Scholar 

  • Luo Y, Sims DA, Griffin KL (1998) Nonlinearity of photosynthetic responses to growth in rising atmospheric CO2: an experimental and modelling study. Glob Change Biol 4:173–183

    Article  Google Scholar 

  • Luomala E-M, Laitinen K, Sutinen S, Kellomäki S, Vapaavuori E (2005) Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant Cell Environ 28:733–749

    Article  CAS  Google Scholar 

  • Luu D-T, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96

    Article  CAS  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    CAS  Google Scholar 

  • MacCurdy E (ed) (2002) The notebooks of Leonardo DaVinci, definitive edition in one volume. Konecky & Konecky, Old Saybrook

    Google Scholar 

  • Mäkelä A, Hari P, Berninger F, Hänninen H, Nikinmaa E (2004) Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature. Tree Physiol 24:369–376

    Article  Google Scholar 

  • Manninen S, Huttunen S, Perämäki P (1997) Needle S fractions and S to N ratios as indices of SO2. Water Air Soil Pollut 95:277–298

    CAS  Google Scholar 

  • Markham JH (2009) Variation in moss-associated nitrogen fixation in boreal forest stands. Oecologia 161:353–359

    Article  Google Scholar 

  • Martikainen PJ (1984) Nitrification in two coniferous forest soils after different fertilization treatments. Soil Biol Biochem 16:577–582

    Article  CAS  Google Scholar 

  • Martikainen PJ (1985) Nitrous oxide emission associated with autotrophic ammonium oxidation in acid coniferous forest soil. Appl Environ Microbiol 50:1519–1525

    CAS  Google Scholar 

  • Martikainen PJ, Lehtonen M, Lång K, De Boer W, Ferm A (1993) Nitrification and nitrous oxide production potentials in aerobic soil samples from the soil profile of a Finnish coniferous site receiving high ammonium deposition. FEMS Microbiol Ecol 13:113–122

    Article  CAS  Google Scholar 

  • Martin F, Kohler A, Duplessis S (2007) Living in harmony in the wood underground: ectomycorrhizal genomics. Curr Opin Plant Biol 10:204–210

    Article  CAS  Google Scholar 

  • Martino E, Perotto S (2010) Mineral transformations by mycorrhizal fungi. Geomicrobiol J 27:609–623

    Article  CAS  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol 48:399–429

    Article  CAS  Google Scholar 

  • Mazhitova G (2006) Soils of the boreal forest. In: Encyclopedia of soil science. Taylor & Francis, New York

    Google Scholar 

  • McCarty GW (1999) Modes of action of nitrification inhibitors. Biol Fertil Soils 29:1–9

    Article  CAS  Google Scholar 

  • McGechan MB, Lewis DR (2002a) Sorption of phosphorus by soil, Part 1: Principles, equations and models. Biosyst Eng 82:1–24

    Article  Google Scholar 

  • McGechan MB, Lewis DR (2002b) Sorption of phosphorus by soil, Part 2: Measurement methods, results and model parameter values. Biosyst Eng 82:115–130

    Article  Google Scholar 

  • McTiernan KB, Coûteaux M-M, Berg B, Berg MP, de Anta RC, Gallardo A, Kratz W, Piussi P, Remacle J, De Santo AV (2003) Changes in chemical composition of Pinus sylvestris needle litter during decomposition along a European coniferous forest climatic transect. Soil Biol Biochem 35:801–812

    Article  CAS  Google Scholar 

  • Mencuccini M, Grace J, Fiovaranti M (1997) Biomechanical and hydraulical determinants of tree structure in Scots pine: anatomical characteristics. Tree Physiol 17:105–113

    Article  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer, Dordrecht

    Book  Google Scholar 

  • Meroni M, Busetto L, Colombo R, Guanter L, Moreno J, Verhoef W (2010) Performance of spectral fitting methods for vegetation fluorescence quantification. Remote Sens Environ 114:363–374

    Article  Google Scholar 

  • Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  CAS  Google Scholar 

  • Morgan PB, Bollero GA, Nelson RL, Dohleman FG, Long SP (2005) Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Glob Change Biol 11:1856–1865

    Article  Google Scholar 

  • Morrell JJ, Gartner BL (1998) Wood as a material. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor & Francis, London

    Google Scholar 

  • Moya I, Camenen L, Evain S, Goulas Y, Cerovic ZG, Latouche G, Flexas J, Ounis A (2004) A new instrument for passive remote sensing 1. Measurements of sunlight-induced chlorophyll fluorescence. Remote Sens Environ 91:186–197

    Article  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  Google Scholar 

  • Müller M, Varama M, Heinonen J, Hallaksela A-M (2002) Influence of insects on the diversity of fungi in decaying spruce wood in managed and natural forests. For Ecol Manage 166:165–181

    Article  Google Scholar 

  • Müller T, Avolio M, Olivi M, Benjdia M, Rikirsch E, Kasaras A, Fitz M, Chalot M, Wipf D (2007) Nitrogen transport in the ectomycorrhiza association: The Hebeloma cylindrosporum-Pinus pinaster model. Phytochem 68:41–51

    Article  CAS  Google Scholar 

  • Mulroy TW (1979) Spectral properties of heavily glaucous and non-glaucous leaves of a succulent rosette-plant. Oecologia 38:349–357

    Article  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  CAS  Google Scholar 

  • Nehls U, Mikolajewski S, Magel E, Hampp R (2001) Carbohydrate metabolism in ectomycorrhizas: gene expression, monosaccharide transport and metabolic control. New Phytol 150:533–541

    Article  CAS  Google Scholar 

  • Nehls U, Göhringer F, Wittulsky S, Dietz S (2010) Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol 12:292–301

    Article  CAS  Google Scholar 

  • Nelson PN, Baldock JA (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analysis. Biogeochemistry 72:1–34

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Bigham JM (ed) Methods of soil analysis. Part 3. Chemical methods, vol 5, SSSA book series. Soil Science Society of America, American Society of Agronomy, Madison

    Google Scholar 

  • Nichol CJ, Lloyd J, Shibistova O, Arneth A, Roser C, Knohl A, Matsubara S, Grace J (2002) Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest. Tellus 54B:677–687

    CAS  Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212

    Article  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol 50:333–359

    Article  CAS  Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic, San Diego

    Google Scholar 

  • Noe SM, Giersch C (2004) A simple dynamic model of photosynthesis in oak leaves: coupling leaf conductance and photosynthetic carbon fixation by a variable intracellular CO2 pool. Funct Plant Biol 31:1195–1204

    Article  CAS  Google Scholar 

  • Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400

    Article  Google Scholar 

  • Oaks A (1994) Efficiency of nitrogen utilization in C3 and C4 cereals. Plant Physiol 106:407–414

    CAS  Google Scholar 

  • Odum HT (1983) Systems Ecology: An Introduction. John Wiley, New York

    Google Scholar 

  • Oker-Blom P, Smolander H (1988) The ratio of shoot silhouette area to total needle area in Scots pine. For Sci 34:894–906

    Google Scholar 

  • Olascoaga et al. (manuscript in preparation)

    Google Scholar 

  • Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    Article  CAS  Google Scholar 

  • Oppert C, Klingeman WE, Willis JD, Oppert B, Jurat-Fuentes JL (2010) Prospecting for cellulolytic activity in insect digestive fluids. Comp Biochem Phys B 155:145–154

    Article  CAS  Google Scholar 

  • Paavolainen L, Fox M, Smolander A (2000) Nitrification and denitrification in forest soil subjected to sprinkling infiltration. Soil Biol Biochem 32:669–678

    Article  CAS  Google Scholar 

  • Parrent JL, Vilgalys R (2009) Expression of genes involved in symbiotic carbon and nitrogen transport in Pinus taeda mycorrhizal roots exposed to CO2 enrichment and nitrogen fertilization. Mycorrhiza 19:469–479

    Article  CAS  Google Scholar 

  • Parson WW, Nagarajan V (2003) Optical spectroscopy in photosynthetic antennas. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht

    Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Phys 48:191–222

    Article  CAS  Google Scholar 

  • Pauchet Y, Muck A, Svatos A, Heckel DG, Preiss S (2008) Mapping the larval midgut lumen proteome of Helicoverpa armigera, a generalist herbivorous insect. J Proteotome Res 7:1629–1639

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic, San Diego

    Google Scholar 

  • Pelkonen P (1980) The uptake of carbon dioxide in Scots pine during spring. Flora 169:386–397

    Google Scholar 

  • Pelkonen P, Hari P (1980) The dependence of the springtime recovery of CO2 uptake in Scots pine on temperature and internal factors. Flora 169:398–404

    Google Scholar 

  • Peltovuori T (2006) Phosphorus in agricultural soils of Finland – characterization of reserves and retention in mineral soil profiles. Pro Terra 26, Dissertation, University of Helsinki

    Google Scholar 

  • Peñuelas J, Filella I (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151–156

    Article  Google Scholar 

  • Pensa M, Sellin A (2002) Needle longevity of Scots pine in relation to foliar nitrogen content, specific leaf area, and shoot growth in different forest types. Can J For Res 32:1225–1231

    Article  Google Scholar 

  • Persson T (1989) Role of soil animals in C and N mineralisation. Plant Soil 115:241–245

    Article  Google Scholar 

  • Persson T, Bååth E, Clarholm M, Lundkvist H, Söderström BE, Sohlenius B (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. Ecol Bull 32:419–459

    CAS  Google Scholar 

  • Persson J, Gardeström P, Näsholm T (2006) Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. J Exp Bot 57:2651–2659

    Article  CAS  Google Scholar 

  • Peterson E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  Google Scholar 

  • Peterson CA, Enstone DE, Taylor JH (1999) Pine root structure and its potential significance for root functions. Plant Soil 217:205–213

    Article  Google Scholar 

  • Peterson MG, Dietterich HR, Lachenbruch B (2007) Do Douglas-fir branches and roots have juvenile wood? Wood Fiber Sci 39:651–660

    CAS  Google Scholar 

  • Pettersson R, McDonald AJS, Stadenberg I (1993) Response of small birch plants (Betula pendula Roth.) to elevated CO2 and nitrogen supply. Plant Cell Environ 16:1115–1121

    Article  CAS  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243.

    Article  CAS  Google Scholar 

  • Pietarinen I, Kanninen M, Hari P, Kellomäki S (1982) A simulation model for daily growth of shoots, needles and stem diameter in Scots pine trees. For Sci 28:573–581

    Google Scholar 

  • Piirainen S, Finér L, Mannerkoski H, Starr M (2007) Carbon, nitrogen and phosphorus leaching after site preparation at a boreal forest clear-cut area. For Ecol Manage 243:10–18

    Article  Google Scholar 

  • Pinelli P, Loreto F (2003) (CO2)–C12 emission from different metabolic pathways measured in illuminated and darkened C3 and C4 leaves at low, atmospheric and elevated CO2 concentration. J Exp Bot 54:1761–1769

    Article  CAS  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    Article  CAS  Google Scholar 

  • Plotkin JB (2011) The lives of proteins. Science 331:683

    Article  CAS  Google Scholar 

  • Porcar-Castell A (2011) A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Physiol Plantarum 143:139–153

    Article  CAS  Google Scholar 

  • Porcar-Castell A, Juurola E, Ensminger I, Berninger F, Hari P, Nikinmaa E (2008a) Seasonal acclimation of photosystem II in Pinus sylvestris. II. Studying the effect of light environment through the rate constants of sustained thermal dissipation and photochemistry. Tree Physiol 28:1483–1491

    Article  CAS  Google Scholar 

  • Porcar-Castell A, Juurola E, Nikinmaa E, Berninger F, Ensminger I, Hari P (2008b) Seasonal acclimation of photosystem II in Pinus sylvestris. I. Estimating the rate constants of sustained thermal energy dissipation and photochemistry. Tree Physiol 28:1475–1482

    Article  Google Scholar 

  • Porcar-Castell A, Juurola E, Ensminger I, Berninger F, Hari P, Nikinmaa E (2008c) Seasonal acclimation of photosystem II in Pinus sylvestris. II. Using the rate constants of sustained thermal energy dissipation and photochemistry to study the effect of the light environment. Tree Physiol 28:1483–1491

    Article  CAS  Google Scholar 

  • Porcar-Castell A, García-Plazaola JI, Nichol C, Kolari P, Olascoaga B, Kuusinen N, Fernández-Marín B, Pulkkinen M, Juurola E, Nikinmaa E (2012). Physiology of the seasonal relationship between photochemical reflectance index and photosynthetic light use efficiency. Oecologia 170:313–323

    Google Scholar 

  • Poth M, Focht DD (1985) 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl Environ Microbiol 49:1134–1141

    CAS  Google Scholar 

  • Priha O, Smolander A (1999) Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biol Biochem 31:965–977

    Article  CAS  Google Scholar 

  • Priha O, Grayston SJ, Pennanen T, Smolander A (1999) Microbial activity related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil. FEMS Microbiol Ecol 30:187–199

    Article  CAS  Google Scholar 

  • Pritchard SG, Peterson CM, Prior SA, Rogers HH (1997) Elevated atmospheric CO2 differentially affects needle chloroplast ultrastructure and phloem anatomy in Pinus palustris: interaction with soil resource availability. Plant Cell Environ 20:461–471

    Article  Google Scholar 

  • Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO2 and plant structure: a review. Glob Change Biol 5:807–837

    Article  Google Scholar 

  • Pritsch K, Garbaye J (2011) Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Ann For Sci 68:25–32

    Article  Google Scholar 

  • Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer, Berlin

    Book  Google Scholar 

  • Puhlmann H, von Wilpert K (2012) Pedotransfer functions for water retention and unsaturated hydraulic conductivity of forest soils. J Plant Nutr Soil Sci 175:221–235

    Article  CAS  Google Scholar 

  • Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil 274:37–49

    Article  CAS  Google Scholar 

  • Rahman AF, Cordova VD, Gamon JA et al (2004) Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: a novel approach. Geophys Res Lett 31:1–4

    Article  CAS  Google Scholar 

  • Raivonen M, Keronen P, Vesala T, Kulmala M, Hari P (2003) Measuring shoot-level NO x flux in field conditions: the role of blank chambers. Boreal Environ Res 8:445–455

    CAS  Google Scholar 

  • Raivonen M, Bonn B, Sanz MJ, Vesala T, Kulmala M, Hari P (2006) UV-induced NO y emissions from Scots pine: could they originate from photolysis of deposited HNO3? Atmos Environ 40:6201–6213

    Article  CAS  Google Scholar 

  • Rajasekar R (2007) Quantification of protein nitrogen in boreal forest soils. Pro gradu, University of Helsinki

    Google Scholar 

  • Rautio P, Huttunen S, Lamppu J (1998) Element concentrations in Scots pine needles on radial transects across a subarctic area. Water Air Soil Poll 102:389–405

    Article  CAS  Google Scholar 

  • Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci USA 106:14162–14167. www.pnas.org_cgi_doi_10.1073_pnas.0902279106

    Google Scholar 

  • Repo T, Pelkonen P (1986) Temperature step response of hardening in Pinus sylvestris seedlings. Scand J For Res 1:271–284

    Article  Google Scholar 

  • Repo T, Leinonen I, Wang K-Y, Hänninen H (2006) Relation between photosynthetic capacity and cold hardiness in Scots pine. Physiol Plantarum 126:224–231

    Article  CAS  Google Scholar 

  • Rey A, Jarvis PG (1998) Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch trees (Betula pendula). Tree Physiol 18:441–450

    Article  CAS  Google Scholar 

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience 9:331–332

    Google Scholar 

  • Riikonen J, Holopainen T, Oksanen E, Vapaavuori E (2005) Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiol 25:549–560

    Article  Google Scholar 

  • Ritchie RJ (2006) Estimation of cytoplasmic nitrate and its electrochemical potential in barley roots using \( {}^{{13}}\mathrm{NO}_3^{ - } \) and compartmental analysis. New Phytol 171:643–655

    CAS  Google Scholar 

  • Roberntz P, Stockfors J (1998) Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees. Tree Physiol 18:233–241

    Article  Google Scholar 

  • Rondón A, Granat L (1994) Studies on the dry deposition of NO2 to coniferous species at low NO2 concentrations. Tellus 46B:339–352

    Google Scholar 

  • Rondón A, Johansson C, Granat L (1993) Dry deposition of nitrogen dioxide and ozone to coniferous forests. J Geophys Res 98:5159–5172

    Article  Google Scholar 

  • Room PM, Maillette L, Hanan JS (1994) Module and metamer dynamics and virtual plants. Adv Ecol Res 25:105–157

    Article  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Springer, Berlin

    Google Scholar 

  • Salminen R (ed) (2005) Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Geological Survey of Finland, Espoo

    Google Scholar 

  • Sanborn P, Preston C, Brockley R (2002) N2-fixation by Sitka alder in a young lodgepole pine stand in central interior British Columbia, Canada. For Ecol Manage 167:223–231

    Article  Google Scholar 

  • Sarvas R (1972) Investigations on the annual cycle of development of forest trees. Active period. Commun Inst For Fenn 76:1–110

    Google Scholar 

  • Sarvas R (1974) Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Commun Inst For Fenn 84:1–101

    Google Scholar 

  • Satoh S (2006) Organic substances in xylem sap delivered to above-ground organs by the roots. J Plant Res 119:179–187

    Article  CAS  Google Scholar 

  • Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Lett 581:2309–2317

    Article  CAS  Google Scholar 

  • Sauer D, Sponagel H, Sommer M, Giani L, Jahn R, Stahr K (2007) Podzol: soil of the year 2007. A review on its genesis, occurrence, and functions. J Plant Nutr Soil Sci 170:561–597

    Article  CAS  Google Scholar 

  • Scarascia-Mugnozza G, De Angelis P, Matteucci G, Valentini R (1996) Long-term exposure to elevated [CO2] in a natural Quercus ilex L. community: net photosynthesis and photochemical efficiency of PSII at different levels of water stress. Plant Cell Environ 19:43–654

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schindlbacher A, Zechmeister-Bolternstern S, Butterbach-Bahl K (2004) Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest ecosystems. J Geophys Res 109:D17302

    Article  CAS  Google Scholar 

  • Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr MK, Strous M, Op den Camp HJM, Jetten MSM (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9:2364–2374

    Article  CAS  Google Scholar 

  • Schmidt I, Sliekers O, Schmid M, Cirpus I, Strous M, Bock E, Kuenen JG, Jetten MSM (2002) Aerobic and anaerobic ammonia oxidizing bacteria competitors or natural partners? – minireview. FEMS Microbiol Ecol 39:175–181

    CAS  Google Scholar 

  • Schnitzer M (2000) A lifetime perspective on the chemistry of soil organic matter. Adv Agron 68:1–58

    Article  CAS  Google Scholar 

  • Schowalter TD (1995) Canopy arthropod communities in relation to forest age and alternative harvest practices in western Oregon. For Ecol Manage 78:115–125

    Article  Google Scholar 

  • Schowalter TD, Hargrove WW, Crossley DA Jr (1986) Herbivory in forested ecosystems. Annu Rev Entomol 31:177–196

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  CAS  Google Scholar 

  • Schulz B (2011) Functional classification of plant plasma membrane transporters. In: Murphy AS, Peer W, Schulz B (eds) The plant plasma membrane, vol 19, 1st edn, Plant cell monographs. Springer, Berlin

    Google Scholar 

  • Scurlock JMO, Asner GP, Gower ST (2001) Worldwide historical estimates and bibliography of Leaf Area Index, 1932–2000. ORNL Technical Memorandum TM-2001/268, Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Segschneider H-J, Wildt J, Förstel H (1995) Uptake of 15NO2 by sunflower (Helianthus annuus) during exposures in light and darkness: quantities, relationship to stomatal aperture and incorporation into different nitrogen pools within the plant. New Phytol 131:109–119

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New York

    Google Scholar 

  • Setälä H, Huhta V (1991) Soil fauna increase Betula pendula growth: laboratory experiments with coniferous forest floor. Ecology 72:665–671

    Article  Google Scholar 

  • Setälä H, Laakso J, Mikola J, Huhta V (1998) Functional diversity of decomposer organisms in relation to primary production. Appl Soil Ecol 9:25–31

    Article  Google Scholar 

  • Sharkey T (1988) Estimating the rate of photorespiration in leaves. Physiol Plantarum 73:147–152

    Article  CAS  Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964a) A quantitative analysis of plant form – the Pipe Model theory. I. Basic analyses. Jpn J Ecol 14:97–105

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964b) A quantitative analysis of plant form – the Pipe Model theory. II. Further evidence of the theory and its application in forest ecology. Jpn J Ecol 14:133–139

    Google Scholar 

  • Sievänen R, Lindner M, Mäkelä A, Lash P (2000) Volume growth and survival graphs: a method for evaluating process-based models. Tree Physiol 20:357–365

    Article  Google Scholar 

  • Silveira ML, Comerford NB, Reddy KR, Cooper WT, El-Rifai H (2008) Characterization of soil organic carbon pools by acid hydrolysis. Geoderma 144:405–414

    Article  CAS  Google Scholar 

  • Simek M (2000) Nitrification in soil – terminology and methodology. Rost Vyroba 46:385–395

    Google Scholar 

  • Simojoki A (2001) Oxygen supply to plant roots in cultivated mineral soils. Dissertation, University of Helsinki

    Google Scholar 

  • Simojoki A, Garcia H, Pihlatie M, Pumpanen J, Kurola J, Salkinoja-Salonen M, Hari P (2008) Environmental factors in soil. In: Hari P, Kulmala L (eds) Boreal forest and climate change, vol 34, Advances in global change research. Springer, Dordrecht

    Google Scholar 

  • Singh U, Uehara G (1999) Electrochemistry of the double layer: principles and applications to soils. In: Sparks DL (ed) Soil physical chemistry, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Sinsabaugh RL, Carreiro MM, Alvarez S (2002) Enzyme and microbiological dynamics of litter composition. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York

    Google Scholar 

  • Sjöström E (1993) Wood chemistry. Fundamentals and applications, 2nd edn. Academic, San Diego

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Sokolova TA (2011) The role of soil biota in the weathering of minerals: a review of literature. Eurasian Soil Sci+ 44:56–72

    Article  Google Scholar 

  • Sparks JP, Monson RK, Sparks KL, Lerdau M (2001) Leaf uptake of nitrogen dioxide (NO2) in a tropical wet forest: implications to tropospheric chemistry. Oecologia 127:214–221

    Article  Google Scholar 

  • Springer CJ, Thomas RB (2006) Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment. Tree Physiol 27:25–32

    Article  Google Scholar 

  • Stafsform JP (1995) Developmental potential of shoot buds. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic, San Diego

    Google Scholar 

  • Steinberg G (2007) Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot Cell 6:351–360

    Article  CAS  Google Scholar 

  • Stemmler K, Ammann M, Donders C, Kleffmann J, George C (2006) Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 440:195–198

    Article  CAS  Google Scholar 

  • Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol 52:847–875

    Article  CAS  Google Scholar 

  • Steudle E, Petersen CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14:741–762

    Article  CAS  Google Scholar 

  • Stitt M, Schulze D (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ 17:465–487

    Article  CAS  Google Scholar 

  • Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117

    Article  CAS  Google Scholar 

  • Suh SO, McHugh JV, Pollock DD, Blackwell M (2006) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265

    Article  CAS  Google Scholar 

  • Sutinen M-L, Arora R, Wisniewski M, Ashworth E, Strimbeck R, Palta J (2001) Mechanisms of frost survival and freeze-damage in nature. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer, Dordrecht

    Google Scholar 

  • Sutinen S, Partanen J, Viherä-Aarnio A, Häkkinen R (2009) Anatomy and morphology in developing vegetative buds on detached Norway spruce branches in controlled conditions before bud burst. Tree Physiol 29:1457–1465

    Article  Google Scholar 

  • Sutinen S, Partanen J, Viherä-Aarnio A, Häkkinen R (2012) Development and growth of primordial shoots in Norway spruce buds before visible bud burst in relation to time and temperature in the field. Tree Physiol 32(8):987–997

    Article  Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer, Sunderland

    Google Scholar 

  • Takahashi S, Badger RB (2010) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  CAS  Google Scholar 

  • Tanahashi M, Kubota K, Matsushita N, Togashi K (2010) Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften 97:311–317

    Article  CAS  Google Scholar 

  • Tate RL III (2002) Microbiology and enzymology of carbon and nitrogen cycling. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York

    Google Scholar 

  • Taylor JH, Peterson CA (2005) Ectomycorrhizal impacts on nutrient uptake pathways in woody roots. New For 30:203–214

    Article  Google Scholar 

  • Taylor LL, Leake JR, Quirk J, Hardy K, Banwart SA, Beerling DJ (2009) Biological weathering and the long term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7:171–191

    Article  CAS  Google Scholar 

  • Teepe R, Dilling H, Beese F (2003) Estimating water retention curves of forest soils from soil texture and bulk density. J Plant Nutr Soil Sci 166:111–119

    Article  CAS  Google Scholar 

  • Teklemariam TA, Sparks JP (2006) Leaf fluxes of NO and NO2 in four herbaceous plant species: the role of ascorbic acid. Atmos Environ 40:2235–2244

    Article  CAS  Google Scholar 

  • Terashima I, Hikosaka K (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ 18:1111–1128

    Article  Google Scholar 

  • Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol 109:1–62

    Article  Google Scholar 

  • Thoene B, Rennenberg H, Weber P (1996) Absorption of atmospheric NO2 by spruce (Picea abies) trees. II. Parameterization of NO2 fluxes by controlled dynamic chamber experiments. New Phytol 134:257–266

    Article  CAS  Google Scholar 

  • Thunes KH, Skartveit J, Gjerde I et al. (44 authors) (2004) The arthropod community of Scots pine (Pinus sylvestris L.) canopies in Norway. Entomol Fenn 15:65–90

    Google Scholar 

  • Tietema A, De Boer W, Riemer L, Verstraten JM (1992) Nitrate production in nitrogen-saturated acid forest soils: vertical distribution and characteristics. Soil Biol Biochem 16:577–582

    Google Scholar 

  • Tietema A, Riemer L, Verstraten JM, van der Maas MP, van Wijk AJ, van Voorhuyzen I (1993) Nitrogen cycling in acid forest soils subject to increased atmospheric nitrogen input. For Ecol Manage 57:29–44

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (1998) Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO2 and temperature. Tree Physiol 18:715–726

    Article  Google Scholar 

  • Tognetti R, Minnocci A, Peñuelas J, Raschi A, Jones MB (2000) Comparative field water relations of three Mediterranean shrub species co-occurring at a natural CO2 vent. J Exp Bot 51:1131–1146

    Article  Google Scholar 

  • Tonteri T (1994) Species richness of boreal understorey forest vegetation in relation to site type and successional factors. Ann Zool Fenn 31:53–60

    Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk H-P, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicates a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  CAS  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Turgeon R (2010) The role of phloem loading reconsidered. Plant Physiol 152:1817–1823

    Article  CAS  Google Scholar 

  • Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221

    Article  CAS  Google Scholar 

  • Turpin DH, Bruce D (1990) Regulation of photosynthetic light-harvesting by nitrogen assimilation in the green alga Selenastrum minutum. FEBS Lett 263:99–103

    Article  CAS  Google Scholar 

  • Turunen M, Huttunen S (1996) Scots pine needle surfaces on radial transects across the north boreal area of Finnish Lapland and the Kola Peninsula of Russia. Environ Pollut 93:175–194

    Article  CAS  Google Scholar 

  • Twigg MM, House E, Thomas R, Whitehead J, Phillips GJ, Famulari D, Fowler D, Gallagher MW, Cape JN, Sutton MA, Nemitz E (2011) Surface/atmosphere exchange and chemical interactions of reactive nitrogen compounds above a manured grassland. Agric For Meteorol 151:1488–1503

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, New York

    Google Scholar 

  • Väänänen R (2008) Phosphorus retention in forest soils and the functioning of buffer zones used in forestry. Dissertationes Forestales 60, University of Helsinki

    Google Scholar 

  • Väänänen R, Hristov J, Tanskanen N, Hartikainen H, Nieminen M, Ilvesniemi H (2008) Phosphorus sorption properties in podzolic forest soils and soil solution phosphorus concentration in undisturbed and disturbed soil profiles. Boreal Environ Res 13:553–567

    Google Scholar 

  • Vaisanen R (1996) Boreal forest ecosystems. IUFRO-95 papers and abstracts, IUFRO XX Word Congress, Tampere

    Google Scholar 

  • van Breemen N, Mulder J, van Grinsven JJM (1987) Impacts of acid atmospheric deposition on woodland soils in the Netherlands. II. Nitrogen transformations. Soil Sci Soc Am J 51:1634–1640

    Article  Google Scholar 

  • van Schöll L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2009) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil (2008) 303:35–47

    Google Scholar 

  • Vanderwel MC, Malcolm JR, Smith SM, Islam N (2006) Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. For Ecol Manage 225:190–199

    Article  Google Scholar 

  • Vanninen P, Mäkelä A (2005) Carbon budget for Scots pine trees: effects of size, competition and site fertility on growth allocation and production. Tree Physiol 25:17–30

    Article  Google Scholar 

  • Vieten B, Conen F, Neftel A, Alewell C (2010) Respiration of nitrous oxide in suboxic soil. Eur J Soil Sci 60:332–337

    Article  CAS  Google Scholar 

  • Viil J, Pärnik T (1995) The rate constant for the reaction of CO2 with enzymebound ribulose 1,5-bisphosphate in vivo. J Exp Bot 46:1301–1307

    Article  CAS  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(58):1–45

    Article  Google Scholar 

  • Vogel JG, Gower ST (1998) Carbon and nitrogen dynamics of boreal jack pine stands with and without a green alder understory. Ecosystems 1:386–400

    Article  CAS  Google Scholar 

  • Vogg G, Heim R, Hansen J, Schäfer C, Beck E (1998) Frost hardening and photosynthetic performance in Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function. Planta 204:193–200

    Article  CAS  Google Scholar 

  • Vuokko R, Kellomäki S, Hari P (1977) The inherent growth rhythm and its effect on the daily height increment of plants. Oikos 29:137–142

    Article  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  CAS  Google Scholar 

  • Walker J, Sharpe PJH, Penridge LK, Wu H (1989) Ecological field theory: the concept and field tests. Vegetatio 83:81–95

    Article  Google Scholar 

  • Wardle DA (1999) How soil food webs make plants grow. Trends Ecol Evol 14:418–420

    Article  Google Scholar 

  • Warren RAJ (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212

    Article  CAS  Google Scholar 

  • Warren CR, Adams MA (2004) Evergreen trees do not maximize instantaneous photosynthesis. Trends Plant Sci 9:270–274

    Article  CAS  Google Scholar 

  • Warren CR, Dreyer E, Adams MA (2003) Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Trees 17:359–366

    CAS  Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  CAS  Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants. Science 169:1269–1278

    Article  CAS  Google Scholar 

  • Weng J-K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  Google Scholar 

  • Wildt J, Kley D, Rockel A, Rockel P, Segschneider HJ (1997) Emission of NO from several higher plant species. J Geophys Res 102:5919–5927

    Article  CAS  Google Scholar 

  • Wilkins D, Van Oosten J-J, Besford RT (1994) Effects of elevated CO2 on growth and chloroplast proteins in Prunus avium. Tree Physiol 14:769–779

    Article  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans Roy Soc B Biol Sci 355:1517–1529

    Article  CAS  Google Scholar 

  • Wittmann C, Kähkönen MA, Ilvesniemi H, Kurola J, Salkinoja-Salonen MS (2004) Areal activities and stratification of hydrolytic enzymes involved in the biochemical cycles of carbon, nitrogen, sulphur and phosphorus in podsolized boreal forest soils. Soil Biol Biochem 36:425–433

    Article  CAS  Google Scholar 

  • Woebken D, Fuchs BM, Kuypers MMM, Amann R (2007) Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Appl Environ Microbiol 73:4648–4657

    Article  CAS  Google Scholar 

  • Woodrow IE (1994) Optimal acclimation of the photosynthetic system under enhanced CO2. Photosynth Res 39:401–412

    Article  CAS  Google Scholar 

  • Woodrow IE, Berry JA (1988) Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu Rev Plant Phys 39:533–594

    Article  CAS  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327:617–618

    Article  Google Scholar 

  • Woodward FI, Kelly CK (1995) The influence of CO2 concentration on stomatal density. New Phytol 131:311–327

    Article  Google Scholar 

  • Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    Article  CAS  Google Scholar 

  • Wu T (2011) Can ectomycorrhizal fungi circumvent the nitrogen mineralization for plant nutrition in temperate forest ecosystems? Soil Biol Biochem 43:1109–1117

    Article  CAS  Google Scholar 

  • Wynn JG (2003) Towards a physically based model of CO2-induced stomatal frequency model. New Phytol 157:391–398

    Article  Google Scholar 

  • Xu JM, Cheng HH, Koskinen WC, Molina JAE (1997) Characterization of potentially bioreactive soil organic carbon and nitrogen by acid hydrolysis. Nutr Cycl Agroecosyst 49:267–271

    Article  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  Google Scholar 

  • Yu F, Berg VS (1994) Control of paraheliotropism in two Phaseolus species. Plant Physiol 106:1567–1573

    CAS  Google Scholar 

  • Zackrisson OT, DeLuca H, Nilsson MC, Sellstedt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–3334

    Article  Google Scholar 

  • Zeide B (1987) Analysis of the 3/2 power law of self-thinning. For Sci 33:517–537

    Google Scholar 

  • Zhou X, He Y, Huang G, Thornberry TD, Carroll MA, Bertman SB (2002) Photochemical production of HONO on glass sample manifold wall surface. Geophys Res Lett 29:1681

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaana Bäck , Jaana Bäck , Pertti Hari , Pertti Hari , Pertti Hari , Pertti Hari , Eija Juurola , Albert Porcar-Castell , Pertti Hari , Jaana Bäck , Asko Simojoki , Pertti Hari , Pertti Hari , Maarit Raivonen , Asko Simojoki , Asko Simojoki or Kari Heliövaara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bäck, J. et al. (2013). Processes in Living Structures. In: Hari, P., Heliövaara, K., Kulmala, L. (eds) Physical and Physiological Forest Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5603-8_4

Download citation

Publish with us

Policies and ethics