Skip to main content

Interpretations of Modern Physics

  • Chapter
  • First Online:
Rational Reconstructions of Modern Physics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 174))

  • 1514 Accesses

Abstract

Since the advent of Modern Physics in 1905, when Einstein’s theory of Special Relativity appeared, we observe a rapidly increasing activity to “interpret” this new and for the present somewhat strange theory of Modern Physics. However, it should be emphasised, that Special Relativity was only the first in a sequence of new theories, that allegedly required an “interpretation”. It was followed by General Relativity, which from a mathematical point of view is much more ambitious and thus even less comprehensible than Special Relativity. Accordingly, interpretations of General Relativity are concerned with mathematical subtleties as well as with purely conceptual problems. The third theory in the sequence in question is Quantum Mechanics. With General Relativity it shares the great mathematical complexity and intricacies, with Special Relativity the new conceptual situation, in particular the difficult interrelations between classical physics and the new theory. Hence, it should not be very surprising that the majority of interpretations of Modern Physics are concerned with Quantum Mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mach (1901).

  2. 2.

    Poincaré (1898).

  3. 3.

    von Helmholtz (1868).

  4. 4.

    Kant (1998), B599.

  5. 5.

    Newton (1934), p. 6.

  6. 6.

    Einstein (1917).

  7. 7.

    Marzke and Wheeler (1964).

  8. 8.

    Ehlers et al. (1972).

  9. 9.

    Einstein writes: “Das Licht hat im Vakuum stets eine bestimmte Ausbreitungsgeschwindigkeit, unabhängig vom Bewegungszustand der Lichtquelle”. Cf. Stachel (2002), p. 107 and note 35.

  10. 10.

    E.g. by Maxwell’s theoretical treatment of light as an electromagnetic wave phenomenon.

  11. 11.

    Mittelstaedt (1976/1989), 3. ed. On pp. 124–126 it is shown, that only mass zero particles fulfil the light principle and vice versa.

  12. 12.

    The first attempt of an empirical justification is de Sitter’s analysis (1913) of double stars. Direct laboratory evidence was not known before the 1960s.

  13. 13.

    Born (1920).

  14. 14.

    Cf. Mittelstaedt (2011).

  15. 15.

    Könneker (2001).

  16. 16.

    Mittelstaedt (1995, 2006).

  17. 17.

    Howard (2004).

  18. 18.

    Bohr (1928).

  19. 19.

    Bohr (1948).

  20. 20.

    E.g. Birkhoff and von Neumann (1936) and Reichenbach (1944).

  21. 21.

    Reichenbach (1944).

  22. 22.

    Bohr (1948), p. 317.

  23. 23.

    For all details, we refer to Jammer (1974).

  24. 24.

    von Neumann (1932).

  25. 25.

    Lahti and Mittelstaedt (1990), pp. 13–17.

  26. 26.

    Busch et al. (1991, 1995, 1996) and Mittelstaedt (1998).

  27. 27.

    Cf. Mittelstaedt (2011).

  28. 28.

    Mittelstaedt (2006).

  29. 29.

    Dalla Chiara et al. (2004), pp. 72–74.

References

  • Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823–843.

    Article  MathSciNet  Google Scholar 

  • Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. Nature, 121, 580–590; Das Quantenpostulat und die neuere Entwicklung der Atomistik. Die Naturwissenschaften, 16 245–257.

    Google Scholar 

  • Bohr, N. (1948). On the notion of causality and complementarity. Dialectica, 2, 312–319.

    Article  MATH  Google Scholar 

  • Born, M. (1920). Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen (gemeinverständlich dargestellt). Berlin: Springer.

    MATH  Google Scholar 

  • Busch, P., Grabowski, M., & Lahti, P. (1995). Operational quantum physics. Heidelberg: Springer.

    MATH  Google Scholar 

  • Busch, P., Lahti, P., & Mittelstaedt, P. (1996). The quantum theory of measurement (2nd ed.). Heidelberg: Springer.

    MATH  Google Scholar 

  • Dalla Chiara, M. L., Giuntini, R., & Greechie, R. (2004). Reasoning in quantum theory. Dordrecht: Kluver Academic Publishers.

    Book  MATH  Google Scholar 

  • Ehlers, J., Pirani, F., & Schild, A. (1972). The geometry of free fall and light propagation. In L. O’Raiffeartaigh (Ed.), General relativity (pp. 63–84). Oxford: Clarendon.

    Google Scholar 

  • Einstein, A. (1917). Über spezielle und allgemeine Relativitätstheorie, (Gemeinverständlich). Braunschweig: Vieweg Verlag.

    Google Scholar 

  • Howard, D. (2004). Who invented the ‘Copenhagen interpretation’? A study in mythology. Philosophy of Science, 71, 669–682.

    Article  MathSciNet  Google Scholar 

  • Jammer, M. (1974). The philosophy of quantum mechanics. New York: Wiley.

    Google Scholar 

  • Kant, I. (1998). The critique of pure reason. (Guyer, P., & Wood, A. Trans.). Cambridge: Cambridge University Press, B600.

    Google Scholar 

  • Könneker, C. (2001). Auflösung der Natur– Auflösung der Geschichte. J. B. Metzler, & T. S. Stuttgart Kuhn (Eds.) (1962), The structure of scientific revolutions. Chicago, 2. 1970.

    Google Scholar 

  • Lahti, P., & Mittelstaedt, P. (Eds.). (1990). Symposium on the foundations of modern physics 1990 – Quantum theory of measurement and related philosophical problems, Joensuu, Finland, 13–17 August 1990. Singapore: World Scientific.

    Google Scholar 

  • Mach, E. (1901). Die Mechanik in ihrer Entwicklung. (4th ed.) English translation: Brockhaus, F. A., Leipzig. (1902) The Science of Mechanics (trans. McCormack,T.J.). Chicago.

    Google Scholar 

  • Martzke, R., & Wheeler, J. A. (1964). Gravitation as geometry I: The geometry of space-time and the geometrodynamical standard meter. In H. Y. Chiu & W. F. Hoffman (Eds.), Gravitation and relativity (pp. 40–64). New York: A. Benjamin.

    Google Scholar 

  • Mittelstaedt, P. (1976b). Der Zeitbegriff in der Physik. Mannheim: BI-Wissenschaftsverlag.

    Google Scholar 

  • Mittelstaedt, P. (1995). Klassische Mechanik (2nd ed.). Mannheim: Bilbliographisches Institut.

    Google Scholar 

  • Mittelstaedt, P. (1998). The interpretation of quantum mechanics and the measurement process. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Mittelstaedt, P. (2006). Intuitiveness and truth in modern physics. In E. Carson & R. Huber (Eds.), Intuition and the axiomatic method (pp. 251–266). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mittelstaedt, P. (2011). The problem of interpretation of modern physics. Foundations of physics, 41, 1667–1676.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Newton, I. (1934). Mathematical principles of natural philosophy. Trans. a. Dotte (1929), rev. T. Cajori. Berkeley: University of California Press.

    Google Scholar 

  • Poincare, H. (1898). La mesure du temps. Revue de metaphysique et de moral, VI, 1–13.

    Google Scholar 

  • Reichenbach, H. (1944). Philosophical foundation of quantum mechanics. Berkeley/Los Angeles: University of California Press; Übers, D. (1949). Philosophische Grundlagen der Quantenmechanik. Basel: Birkhäuser.

    Google Scholar 

  • Stachel, J. (2002). Einstein from B to Z. Boston: Birkhäuser.

    MATH  Google Scholar 

  • von Helmholtz, H. (1868). Über die Tatsachen, die der Geometrie zu Grunde liegen. Nachrichten der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität, Nr. 9, (pp.193–221).

    Google Scholar 

  • von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mittelstaedt, P. (2013). Interpretations of Modern Physics. In: Rational Reconstructions of Modern Physics. Fundamental Theories of Physics, vol 174. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5593-2_5

Download citation

Publish with us

Policies and ethics