Skip to main content

Reconstruction of Special and General Relativity

  • Chapter
  • First Online:
  • 1514 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 174))

Abstract

The historical development of the Theory of Special Relativity offers a rather complicated and confusing impression. At the end of the nineteenth century we find several important philosophical investigations by Ernst Mach and Henri Poincaré about the underlying philosophical prejudices of Newton’s theory of space and time and of classical mechanics. In addition, we find important mathematical contributions by Poincaré and Lorentz about the structure of space and time. Finally, there was an extensive discussion about the meaning of the Michelson experiment, which was considered – erroneously – by many physicists as an experimentum crucis for the validity of Special Relativity. Actually, the Michelson experiment demonstrates merely the isotropy of the so-called two-ways velocity of light. We will come back to this point later.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Huber (2000).

  2. 2.

    Stachel (1989).

  3. 3.

    Stachel (1982).

  4. 4.

    Ignatowski (1910) and Franck and Rothe (1911).

  5. 5.

    We will not discuss here the reasons for the inadequacy of this axiomatic approach.

  6. 6.

    Levy-Leblond (1976) and Mittelstaedt (1976).

  7. 7.

    Mittelstaedt (1995, 2006).

  8. 8.

    Mach (1901).

  9. 9.

    More details about the two Helmholtz theorems can be found in Section 2.6.

  10. 10.

    Poincaré (1898).

  11. 11.

    Mittelstaedt (1976/89).

  12. 12.

    Other empirical methods for the determination of ω are for instance the time dilatation of moving clocks or the increase of the inertial mass of moving bodies. More details are discussed in Section 2.4.

  13. 13.

    Mittelstaedt (2006).

  14. 14.

    Hawking and Ellis (1973), p. 38.

  15. 15.

    Here and in the following we use bold letters for spatial three-vectors.

  16. 16.

    Gamov (1946).

  17. 17.

    Sexl and Urbantke (1992), p. 69.

  18. 18.

    Mittelstaedt (1976/89).

  19. 19.

    Mittelstaedt (2003).

  20. 20.

    Becker (1965), p. XIII f.

  21. 21.

    Stachel (2002).

  22. 22.

    Laugwitz (1960), pp. 145–149.

  23. 23.

    Marzke and Wheeler (1964).

  24. 24.

    Ehlers et al. (1972).

  25. 25.

    Schröter and Schelb (1994).

  26. 26.

    Hawking and Ellis (1973).

  27. 27.

    Petrow (1964).

  28. 28.

    Hawking and Ellis (1973), p. 85.

  29. 29.

    Wheeler (1973).

  30. 30.

    Mittelstaedt (1976), pp. 64–66.

References

  • Becker, O. (Ed.). (1965). Zur Geschichte der griechischen Mathematik. Darmstadt: Wissenschaftliche Buchgesellschaft.

    MATH  Google Scholar 

  • Ehlers, J., Pirani, F., & Schild, A. (1972). The geometry of free fall and light propagation. In L. O’Raiffeartaigh (Ed.), General relativity (pp. 63–84). Oxford: Clarendon.

    Google Scholar 

  • Franck, P., & Rothe, H. (1911). Über die Transformation der Raum-Zeitkoordinaten von ruhenden auf bewegte Systeme. Annalen der Physik, 34, 825–855.

    Article  ADS  Google Scholar 

  • Gamov, G. (1946). Mr. Tompkins in wonderland. New York: The Macmillan Company.

    Google Scholar 

  • Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space-time. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Huber, R. (2000). Einstein und Poincaré (pp. 267–273). Paderborn: Mentis.

    Google Scholar 

  • Ignatowski, W. (1910). Einige allgemeine Bemerkungen zum Relativitätsprinzip. Physikalische Zeitschrift, 11, 972–976.

    Google Scholar 

  • Laugwitz, D. (1960). Differentialgeometrie. Stuttgart: B. G. Teubner.

    MATH  Google Scholar 

  • Lévy-Leblond, J. M. (1976). One more derivation of the Lorentz transformation. American Journal of Physics, 44, 271–277.

    Article  ADS  Google Scholar 

  • Mach, E. (1901). Die Mechanik in ihrer Entwicklung. (4th ed.) English translation: Brockhaus, F. A., Leipzig. (1902) The Science of Mechanics (trans. McCormack,T.J.). Chicago.

    Google Scholar 

  • Martzke, R., & Wheeler, J. A. (1964). Gravitation as geometry I: The geometry of space-time and the geometrodynamical standard meter. In H. Y. Chiu & W. F. Hoffman (Eds.), Gravitation and relativity (pp. 40–64). New York: A. Benjamin.

    Google Scholar 

  • Mittelstaedt, P. (1976a). Philosophical problems of modern physics. Dordrecht: D. Reidel Publishing Company.

    Book  Google Scholar 

  • Mittelstaedt, P. (1976b). Der Zeitbegriff in der Physik. Mannheim: BI-Wissenschaftsverlag.

    Google Scholar 

  • Mittelstaedt, P. (1995). Klassische Mechanik (2nd ed.). Mannheim: Bilbliographisches Institut.

    Google Scholar 

  • Mittelstaedt, P. (2003). Hätte Newton die Relativitätstheorie finden können? In W. Buschlinger & C. Lütge (Eds.), Kaltblütig: Philosophie von einem rationalen Standpunkt (pp. 221–240). Stuttgart: S. Hirzel Verlag.

    Google Scholar 

  • Mittelstaedt, P. (2006). Intuitiveness and truth in modern physics. In E. Carson & R. Huber (Eds.), Intuition and the axiomatic method (pp. 251–266). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Newton, I. (1687). Philosophia Naturalis Principia Mathematica. London: Streator.

    Google Scholar 

  • Petrow, A. S. (1964). Einstein-Räume. Berlin: Akademie Verlag.

    MATH  Google Scholar 

  • Poincare, H. (1898). La mesure du temps. Revue de metaphysique et de moral, VI, 1–13.

    Google Scholar 

  • Schröter, J., & Schelb, U. (1994). A space-time theory with rigorous axiomatics. In U. Majer & H.-J. Schmidt (Eds.), Semantical aspects of spacetime theories. Mannheim: BI-Wissenschaftsverlag.

    Google Scholar 

  • Sexl, R. U., & Urbantke, H. K. (1992). Relativität, Gruppen, Teilchen (3rd ed.). New York: Springer.

    MATH  Google Scholar 

  • Stachel, J. (1982). Einstein and Michelson: The context of discovery and the context of justification. Astronomische Nachrichten, 303, 47–53.

    Article  MathSciNet  ADS  Google Scholar 

  • Stachel, J. (1989). Quale cancone cantarono le sirene. In U. Curi (Ed.), L’opera di Einstein (pp. 21–37). Ferrara: Gabriele Corbino & Company.

    Google Scholar 

  • Stachel, J. (2002). Einstein from B to Z. Boston: Birkhäuser.

    MATH  Google Scholar 

  • Wheeler, J. A. (1973). From relativity to mutability. In J. Mehra (Ed.), The physicist’s conception of nature (pp. 202–247). Dordrecht: Reidel.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mittelstaedt, P. (2013). Reconstruction of Special and General Relativity. In: Rational Reconstructions of Modern Physics. Fundamental Theories of Physics, vol 174. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5593-2_2

Download citation

Publish with us

Policies and ethics