The E2F1-miRNA Cancer Progression Network

  • Susanne Knoll
  • Stephan Emmrich
  • Brigitte M. Pützer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 774)


The transcription factor E2F1 exhibits dual properties, acting as a tumor suppressor and oncogene. Cellular stress such as DNA damage or mitogenic signaling leads to the activation of E2F1 as a mediator of apoptosis in the context of a conserved cellular anti-tumorigenic safeguard mechanism. However in highly aggressive chemoresistant tumors like malignant melanoma and prostate/bladder cancer it switches off this role and acts as promoter of cancer progression. Possible reasons for E2F1 mediated aggressiveness are defects in cell death pathways caused by epigenetic inactivation of important tumor suppressor genes, which often occur in late stage cancer and contribute to chemoresistance. Nevertheless exact mechanisms underlying E2Fs role in invasiveness and metastasis are largely unknown. Different reports hint towards the existence of feedback loops between E2F1 and microRNAs (miRNAs or miRs). MiRs are activated by E2F1 and either the transcription factor itself or cellular genes necessary for the growth regulating function of E2F1 are inhibited by different miRNAs. This mutual regulation possibly influences the balance between E2F1s proapoptotic versus prosurvival function. In the following we will summarize some miRNA-E2F1-interactions contributing to a complex regulatory network.


E2F1 transcription factor microRNA Apoptosis Cancer 



Work related to this review was supported by grants from the Deutsche Krebshilfe and FORUN program of Rostock University Medical Faculty. S. Knoll receives a fellowship of the Landesgraduiertenförderung des Landes Mecklenburg-Vorpommern.


  1. 1.
    DeGregori J (2002) The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta 1602:131–150PubMedGoogle Scholar
  2. 2.
    Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12:2245–2262PubMedGoogle Scholar
  3. 3.
    Stanelle J, Putzer BM (2006) E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol Med 12:177–185PubMedGoogle Scholar
  4. 4.
    Johnson DG, Degregori J (2006) Putting the oncogenic and tumor suppressive activities of E2F into context. Curr Mol Med 6:731–738PubMedGoogle Scholar
  5. 5.
    Pierce AM, Schneider-Broussard R, Gimenez-Conti IB et al (1999) E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model. Mol Cell Biol 19:6408–6414PubMedCentralPubMedGoogle Scholar
  6. 6.
    Xu G, Livingston DM, Krek W (1995) Multiple members of the E2F transcription factor family are the products of oncogenes. Proc Natl Acad Sci USA 92:1357–1361PubMedGoogle Scholar
  7. 7.
    Pickering MT, Kowalik TF (2006) Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene 25:746–755PubMedGoogle Scholar
  8. 8.
    Tsai KY, Hu Y, Macleod KF et al (1998) Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol Cell 2:293–304PubMedGoogle Scholar
  9. 9.
    Yamasaki L, Bronson R, Williams BO et al (1998) Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−)mice. Nat Genet 18:360–364PubMedGoogle Scholar
  10. 10.
    Bates S, Phillips AC, Clark PA et al (1998) p14ARF links the tumour suppressors RB and p53. Nature 395:124–125PubMedGoogle Scholar
  11. 11.
    Eischen CM, Packham G, Nip J et al (2001) Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene 20:6983–6993PubMedGoogle Scholar
  12. 12.
    Furukawa Y, Nishimura N, Furukawa Y et al (2002) Apaf-1 is a mediator of E2F-1-induced apoptosis. J Biol Chem 277:39760–39768PubMedGoogle Scholar
  13. 13.
    Hershko T, Ginsberg D (2004) Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 279:8627–8634PubMedGoogle Scholar
  14. 14.
    Irwin M, Marin MC, Phillips AC et al (2000) Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407:645–648PubMedGoogle Scholar
  15. 15.
    Nahle Z, Polakoff J, Davuluri RV et al (2002) Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4:859–864PubMedGoogle Scholar
  16. 16.
    Phillips AC, Ernst MK, Bates S et al (1999) E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol Cell 4:771–781PubMedGoogle Scholar
  17. 17.
    Racek T, Buhlmann S, Rust F et al (2008) Transcriptional repression of the prosurvival endoplasmic reticulum chaperone GRP78/BIP by E2F1. J Biol Chem 283:34305–34314PubMedGoogle Scholar
  18. 18.
    Stiewe T, Putzer BM (2000) Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet 26:464–469PubMedGoogle Scholar
  19. 19.
    Engelmann D, Knoll S, Ewerth D et al (2010) Functional interplay between E2F1 and chemotherapeutic drugs defines immediate E2F1 target genes crucial for cancer cell death. Cell Mol Life Sci 67:931–948PubMedGoogle Scholar
  20. 20.
    Lin WC, Lin FT, Nevins JR (2001) Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15:1833–1844PubMedGoogle Scholar
  21. 21.
    Hallstrom TC, Mori S, Nevins JR (2008) An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13:11–22PubMedCentralPubMedGoogle Scholar
  22. 22.
    Hallstrom TC, Nevins JR (2003) Specificity in the activation and control of transcription factor E2F-dependent apoptosis. Proc Natl Acad Sci USA 100:10848–10853PubMedGoogle Scholar
  23. 23.
    Alla V, Engelmann D, Niemetz A et al (2010) E2F1 in melanoma progression and metastasis. J Natl Cancer Inst 102:127–133PubMedGoogle Scholar
  24. 24.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedGoogle Scholar
  25. 25.
    Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655PubMedCentralPubMedGoogle Scholar
  26. 26.
    Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101PubMedGoogle Scholar
  27. 27.
    Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060PubMedGoogle Scholar
  28. 28.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139PubMedGoogle Scholar
  29. 29.
    Tomari Y, Matranga C, Haley B et al (2004) A protein sensor for siRNA asymmetry. Science 306:1377–1380PubMedGoogle Scholar
  30. 30.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114PubMedGoogle Scholar
  31. 31.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedGoogle Scholar
  32. 32.
    Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004PubMedGoogle Scholar
  33. 33.
    Medina PP, Slack FJ (2008) microRNAs and cancer: an overview. Cell Cycle 7:2485–2492PubMedGoogle Scholar
  34. 34.
    Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801PubMedGoogle Scholar
  35. 35.
    Bandres E, Cubedo E, Agirre X et al (2006) Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29PubMedCentralPubMedGoogle Scholar
  36. 36.
    Lanza G, Ferracin M, Gafa R et al (2007) mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 6:54PubMedCentralPubMedGoogle Scholar
  37. 37.
    Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261PubMedGoogle Scholar
  38. 38.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033PubMedGoogle Scholar
  39. 39.
    Eder M, Scherr M (2005) MicroRNA and lung cancer. N Engl J Med 352:2446–2448PubMedGoogle Scholar
  40. 40.
    Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070PubMedGoogle Scholar
  41. 41.
    Chen HZ, Tsai SY, Leone G (2009) Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9:785–797PubMedCentralPubMedGoogle Scholar
  42. 42.
    Engelmann D, Putzer BM (2010) Translating DNA damage into cancer cell death – a roadmap for E2F1 apoptotic signalling and opportunities for new drug combinations to overcome chemoresistance. Drug Resist Updat 13:119–131PubMedGoogle Scholar
  43. 43.
    Lee J, Park CK, Park JO et al (2008) Impact of E2F-1 expression on clinical outcome of gastric adenocarcinoma patients with adjuvant chemoradiation therapy. Clin Cancer Res 14:82–88PubMedGoogle Scholar
  44. 44.
    Lee JS, Leem SH, Lee SY et al (2010) Expression signature of E2F1 and its associated genes predict superficial to invasive progression of bladder tumors. J Clin Oncol 28:2660–2667PubMedGoogle Scholar
  45. 45.
    Tuve S, Wagner SN, Schittek B et al (2004) Alterations of DeltaTA-p 73 splice transcripts during melanoma development and progression. Int J Cancer 108:162–166PubMedGoogle Scholar
  46. 46.
    Chin L, Pomerantz J, Polsky D et al (1997) Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11:2822–2834PubMedGoogle Scholar
  47. 47.
    Soengas MS, Capodieci P, Polsky D et al (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409:207–211PubMedGoogle Scholar
  48. 48.
    Emmrich S, Putzer BM (2010) Checks and balances: E2F-microRNA crosstalk in cancer control. Cell Cycle 9:2555–2567PubMedGoogle Scholar
  49. 49.
    O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843PubMedGoogle Scholar
  50. 50.
    He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833PubMedGoogle Scholar
  51. 51.
    Ota A, Tagawa H, Karnan S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095PubMedGoogle Scholar
  52. 52.
    Lu Y, Thomson JM, Wong HY et al (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453PubMedCentralPubMedGoogle Scholar
  53. 53.
    Ebi H, Sato T, Sugito N et al (2009) Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene 28:3371–3379PubMedGoogle Scholar
  54. 54.
    Matsubara H, Takeuchi T, Nishikawa E et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26:6099–6105PubMedGoogle Scholar
  55. 55.
    Diaz R, Silva J, Garcia JM et al (2008) Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer 47:794–802PubMedGoogle Scholar
  56. 56.
    Li Y, Tan W, Neo TW et al (2009) Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci 100:1234–1242PubMedGoogle Scholar
  57. 57.
    Petrocca F, Visone R, Onelli MR et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272–286PubMedGoogle Scholar
  58. 58.
    Petrocca F, Vecchione A, Croce CM (2008) Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res 68:8191–8194PubMedGoogle Scholar
  59. 59.
    Yang G, Zhang R, Chen X et al (2011) MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status. J Mol Med (Berl) 89:1037–1050Google Scholar
  60. 60.
    Lee KH, Chen YL, Yeh SD et al (2009) MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 28:3360–3370PubMedGoogle Scholar
  61. 61.
    Chaussepied M, Ginsberg D (2004) Transcriptional regulation of AKT activation by E2F. Mol Cell 16:831–837PubMedGoogle Scholar
  62. 62.
    Chang TC, Wentzel EA, Kent OA et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752PubMedCentralPubMedGoogle Scholar
  63. 63.
    He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134PubMedGoogle Scholar
  64. 64.
    Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199PubMedGoogle Scholar
  65. 65.
    Raver-Shapira N, Marciano E, Meiri E et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743PubMedGoogle Scholar
  66. 66.
    Tazawa H, Tsuchiya N, Izumiya M et al (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104:15472–15477PubMedGoogle Scholar
  67. 67.
    Ilnytskyy Y, Zemp FJ, Koturbash I et al (2008) Altered microRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism. Biochem Biophys Res Commun 377:41–45PubMedGoogle Scholar
  68. 68.
    Zauli G, Voltan R, di Iasio MG et al (2011) miR-34a induces the downregulation of both E2F1 and B-Myb oncogenes in leukemic cells. Clin Cancer Res 17:2712–2724PubMedGoogle Scholar
  69. 69.
    Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105:13556–13561PubMedGoogle Scholar
  70. 70.
    Polager S, Ginsberg D (2009) p53 and E2f: partners in life and death. Nat Rev Cancer 9:738–748PubMedGoogle Scholar
  71. 71.
    Timmers C, Sharma N, Opavsky R et al (2007) E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol 27:65–78PubMedCentralPubMedGoogle Scholar
  72. 72.
    Pulikkan JA, Dengler V, Peramangalam PS et al (2010) Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 115:1768–1778PubMedGoogle Scholar
  73. 73.
    Nerlov C (2004) C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer 4:394–400PubMedGoogle Scholar
  74. 74.
    Pabst T, Mueller BU, Zhang P et al (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 27:263–270PubMedGoogle Scholar
  75. 75.
    Schuster MB, Porse BT (2006) C/EBPalpha: a tumour suppressor in multiple tissues? Biochim Biophys Acta 1766:88–103PubMedGoogle Scholar
  76. 76.
    Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949PubMedGoogle Scholar
  77. 77.
    Ofir M, Hacohen D, Ginsberg D (2011) MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res 9:440–447PubMedGoogle Scholar
  78. 78.
    Xu T, Zhu Y, Xiong Y et al (2009) MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology 50:113–121PubMedGoogle Scholar
  79. 79.
    Dar AA, Majid S, de Semir D et al (2011) miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 286:16606–16614PubMedGoogle Scholar
  80. 80.
    Sylvestre Y, De Guire V, Querido E et al (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282:2135–2143PubMedGoogle Scholar
  81. 81.
    Woods K, Thomson JM, Hammond SM (2007) Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 282:2130–2134PubMedGoogle Scholar
  82. 82.
    Brosh R, Shalgi R, Liran A et al (2008) p53-Repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 4:229PubMedCentralPubMedGoogle Scholar
  83. 83.
    Fernandez PC, Frank SR, Wang L et al (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129PubMedGoogle Scholar
  84. 84.
    Matsumura I, Tanaka H, Kanakura Y (2003) E2F1 and c-Myc in cell growth and death. Cell Cycle 2:333–338PubMedGoogle Scholar
  85. 85.
    Monzo M, Navarro A, Bandres E et al (2008) Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res 18:823–833PubMedGoogle Scholar
  86. 86.
    Osada H, Takahashi T (2011) let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 102:9–17PubMedGoogle Scholar
  87. 87.
    Pickering MT, Stadler BM, Kowalik TF (2009) miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 28:140–145PubMedCentralPubMedGoogle Scholar
  88. 88.
    Fontana L, Fiori ME, Albini S et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 3:e2236PubMedCentralPubMedGoogle Scholar
  89. 89.
    Ivanovska I, Ball AS, Diaz RL et al (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28:2167–2174PubMedCentralPubMedGoogle Scholar
  90. 90.
    Olive V, Bennett MJ, Walker JC et al (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev 23:2839–2849PubMedGoogle Scholar
  91. 91.
    Tagawa H, Karube K, Tsuzuki S et al (2007) Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci 98:1482–1490PubMedGoogle Scholar
  92. 92.
    Mu P, Han YC, Betel D et al (2009) Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23:2806–2811PubMedGoogle Scholar
  93. 93.
    Adams MR, Sears R, Nuckolls F et al (2000) Complex transcriptional regulatory mechanisms control expression of the E2F3 locus. Mol Cell Biol 20:3633–3639PubMedCentralPubMedGoogle Scholar
  94. 94.
    Leone G, DeGregori J, Sears R et al (1997) Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387:422–426PubMedGoogle Scholar
  95. 95.
    Thalmeier K, Synovzik H, Mertz R et al (1989) Nuclear factor E2F mediates basic transcription and trans-activation by E1a of the human MYC promoter. Genes Dev 3:527–536PubMedGoogle Scholar
  96. 96.
    Aguda BD, Kim Y, Piper-Hunter MG et al (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 105:19678–19683PubMedGoogle Scholar
  97. 97.
    Yan HL, Xue G, Mei Q et al (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28:2719–2732PubMedGoogle Scholar
  98. 98.
    Corney DC, Flesken-Nikitin A, Godwin AK et al (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438PubMedGoogle Scholar
  99. 99.
    Lize M, Pilarski S, Dobbelstein M (2010) E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ 17:452–458PubMedGoogle Scholar
  100. 100.
    Yang X, Feng M, Jiang X et al (2009) miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 23:2388–2393PubMedGoogle Scholar
  101. 101.
    Lize M, Klimke A, Dobbelstein M (2011) MicroRNA-449 in cell fate determination. Cell Cycle 10:2874–2882PubMedGoogle Scholar
  102. 102.
    Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 105:13421–13426PubMedGoogle Scholar
  103. 103.
    Feng M, Yu Q (2010) miR-449 regulates CDK-Rb-E2F1 through an auto-regulatory feedback circuit. Cell Cycle 9:213–214PubMedGoogle Scholar
  104. 104.
    Ohtani K, DeGregori J, Nevins JR (1995) Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 92:12146–12150PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Susanne Knoll
    • 1
  • Stephan Emmrich
    • 1
  • Brigitte M. Pützer
    • 1
  1. 1.Department of Vectorology and Experimental Gene Therapy, Biomedical Research CenterRostock University Medical CenterRostockGermany

Personalised recommendations