The p53/microRNA Network in Cancer: Experimental and Bioinformatics Approaches

  • Sabine Hünten
  • Helge Siemens
  • Markus Kaller
  • Heiko Hermeking
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 774)


In the recent years, microRNAs (miRNAs) were identified as important components of the signaling cascades that mediate and regulate tumor suppression exerted by p53. This review illustrates some of the main principles that underlie the mechanisms by which miRNAs participate in p53’s function and how they were identified. Furthermore, the current status of the research on the connection between p53 and miRNAs, as well as alterations in the p53/miRNA pathways found in cancer will be summarized and discussed. In addition, experimental and bioinformatics approaches, which can be applied to study the connection between p53 and miRNAs are described. Although, some of the central miRNA-encoding genes that mediate the effects of p53, such as the miR-34 and miR-200 families, have been identified, many additional analyses remain to be performed to fully elucidate the connections between p53 and miRNAs.


p53 microRNA miRNA Tumor suppression SILAC Next generation sequencing Genome-wide analysis miR-34 miR-34a miR-34b/c 



We thank the members of the Hermeking Lab for discussions, and Ralf Zimmer and Florian Erhard for advice concerning Fig. 5.6. Work in Heiko Hermeking’s lab is supported by the German Israel Science Foundation (GIF), the Rudolf-Bartling-Stiftung, the Deutsche Krebshilfe and the Deutsche Forschungsgemeinschaft (DFG).


  1. 1.
    Soussi T (2011) TP53 mutations in human cancer: database reassessment and prospects for the next decade. Adv Cancer Res 110:107–139PubMedGoogle Scholar
  2. 2.
    Cheok CF et al (2011) Translating p53 into the clinic. Nat Rev Clin Oncol 8(1):25–37PubMedGoogle Scholar
  3. 3.
    Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458(7242):1127–1130PubMedCentralPubMedGoogle Scholar
  4. 4.
    Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622PubMedCentralPubMedGoogle Scholar
  5. 5.
    Derheimer FA, Kastan MB (2010) Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 584(17):3675–3681PubMedCentralPubMedGoogle Scholar
  6. 6.
    Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9(10):724–737PubMedGoogle Scholar
  7. 7.
    Leung AK, Sharp PA (2007) microRNAs: a safeguard against turmoil? Cell 130(4):581–585PubMedGoogle Scholar
  8. 8.
    Leung AK, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40(2):205–215PubMedCentralPubMedGoogle Scholar
  9. 9.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310PubMedGoogle Scholar
  10. 10.
    Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumor suppression. Not Rev Cancer 12(9):613–626PubMedGoogle Scholar
  11. 11.
    Hermeking H (2003) The 14-3-3 cancer connection. Nat Rev Cancer 3(12):931–943PubMedGoogle Scholar
  12. 12.
    Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199PubMedGoogle Scholar
  13. 13.
    Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9(10):691–700PubMedGoogle Scholar
  14. 14.
    Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431PubMedGoogle Scholar
  15. 15.
    Riley T et al (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412PubMedGoogle Scholar
  16. 16.
    Tarasov V et al (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13):1586–1593PubMedGoogle Scholar
  17. 17.
    Chang TC et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752PubMedCentralPubMedGoogle Scholar
  18. 18.
    He L et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134PubMedGoogle Scholar
  19. 19.
    Bommer GT et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307PubMedGoogle Scholar
  20. 20.
    Raver-Shapira N et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743PubMedGoogle Scholar
  21. 21.
    Corney DC et al (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18):8433–8438PubMedGoogle Scholar
  22. 22.
    He X, He L, Hannon GJ (2007) The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 67(23):11099–11101PubMedGoogle Scholar
  23. 23.
    Kaller M (2011) Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics 10(8):M111 010462PubMedGoogle Scholar
  24. 24.
    Lal A et al (2011) Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 7(11):e1002363PubMedCentralPubMedGoogle Scholar
  25. 25.
    Lodygin D et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7(16):2591–2600PubMedGoogle Scholar
  26. 26.
    Vogt M et al (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458(3):313–322PubMedGoogle Scholar
  27. 27.
    Hwang CI et al (2011) Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci U S A 108(34):14240–14245PubMedCentralPubMedGoogle Scholar
  28. 28.
    Schubert J, Brabletz T (2011) p53 spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Res 21(5):705–707PubMedGoogle Scholar
  29. 29.
    Siemens H (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10(24):4256–4271PubMedGoogle Scholar
  30. 30.
    Kim NH et al (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 195(3):417–433PubMedGoogle Scholar
  31. 31.
    Brabletz T (2012) MiR-34 and SNAIL: another double-negative feedback loop controlling cellular plasticity/EMT governed by p53. Cell Cycle 11(2):215PubMedGoogle Scholar
  32. 32.
    Liu C et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215PubMedCentralPubMedGoogle Scholar
  33. 33.
    Choi YJ (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 13(11):1353–1360PubMedCentralPubMedGoogle Scholar
  34. 34.
    Kim NH (2011) p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 4(197):ra71PubMedCentralPubMedGoogle Scholar
  35. 35.
    Lize M, Klimke A, Dobbelstein M (2011) MicroRNA-449 in cell fate determination. Cell Cycle 10(17):2874–2882PubMedGoogle Scholar
  36. 36.
    Chang CJ et al (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13(3):317–323PubMedCentralPubMedGoogle Scholar
  37. 37.
    Kim T et al (2011) p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208(5):875–883PubMedCentralPubMedGoogle Scholar
  38. 38.
    Gregory PA et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601PubMedGoogle Scholar
  39. 39.
    Keck T, Brabletz T (2011) Under stress: p53 controls EMT and stemness in pancreatic epithelial cells. Cell Cycle 10(11):1715PubMedGoogle Scholar
  40. 40.
    Braun CJ et al (2008) p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68(24):10094–10104PubMedCentralPubMedGoogle Scholar
  41. 41.
    Georges SA et al (2008) Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res 68(24):10105–10112PubMedGoogle Scholar
  42. 42.
    Yamakuchi M et al (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 107(14):6334–6339PubMedCentralPubMedGoogle Scholar
  43. 43.
    Bohlig L, Friedrich M, Engeland K (2011) p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins. Nucleic Acids Res 39(2):440–453PubMedCentralPubMedGoogle Scholar
  44. 44.
    Sachdeva M et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A 106(9):3207–3212PubMedCentralPubMedGoogle Scholar
  45. 45.
    Xu N et al (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658PubMedGoogle Scholar
  46. 46.
    Krizhanovsky V, Lowe SW (2009) Stem cells: the promises and perils of p53. Nature 460(7259):1085–1086PubMedCentralPubMedGoogle Scholar
  47. 47.
    Suzuki HI et al (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533PubMedGoogle Scholar
  48. 48.
    Fabbri M et al (2011) Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA 305(1):59–67PubMedCentralPubMedGoogle Scholar
  49. 49.
    Careccia S et al (2009) A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes. Oncogene 28(45):4034–4040PubMedGoogle Scholar
  50. 50.
    Nishida N et al (2011) MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol 38(5):1437–1443PubMedGoogle Scholar
  51. 51.
    Hu W et al (2010) Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38(5):689–699PubMedCentralPubMedGoogle Scholar
  52. 52.
    Herrera-Merchan A (2010) miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell Cycle 9(16):3277–3285PubMedGoogle Scholar
  53. 53.
    Swarbrick A et al (2010) miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 16(10):1134–1140PubMedCentralPubMedGoogle Scholar
  54. 54.
    Tian S et al (2010) MicroRNA-1285 inhibits the expression of p53 by directly targeting its 3′ untranslated region. Biochem Biophys Res Commun 396(2):435–439PubMedGoogle Scholar
  55. 55.
    Kumar M et al (2011) Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 30(7):843–853PubMedCentralPubMedGoogle Scholar
  56. 56.
    Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105(36):13421–13426PubMedCentralPubMedGoogle Scholar
  57. 57.
    Bou Kheir T et al (2011) miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer 10:29PubMedCentralPubMedGoogle Scholar
  58. 58.
    Fornari F et al (2009) MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 69(14):5761–5767PubMedGoogle Scholar
  59. 59.
    Afanasyeva EA et al (2011) MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival. Cell Death Differ 18(6):974–984PubMedGoogle Scholar
  60. 60.
    Pichiorri F et al (2010) Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18(4):367–381PubMedCentralPubMedGoogle Scholar
  61. 61.
    Xiao J et al (2011) miR-605 joins p53 network to form a p53:miR-605: Mdm2 positive feedback loop in response to stress. EMBO J 30(3):524–532PubMedGoogle Scholar
  62. 62.
    Mudhasani R et al (2008) Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 181(7):1055–1063PubMedGoogle Scholar
  63. 63.
    Su X et al (2010) TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467(7318):986–990PubMedCentralPubMedGoogle Scholar
  64. 64.
    Ory B, Ellisen LW (2011) A microRNA-dependent circuit controlling p63/p73 homeostasis: p53 family cross-talk meets therapeutic opportunity. Oncotarget 2(3):259–264PubMedGoogle Scholar
  65. 65.
    Salmena L et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358PubMedCentralPubMedGoogle Scholar
  66. 66.
    Rubio-Somoza I et al (2011) ceRNAs: miRNA target mimic mimics. Cell 147(7):1431–1432PubMedGoogle Scholar
  67. 67.
    Tay Y et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147(2):344–357PubMedCentralPubMedGoogle Scholar
  68. 68.
    Diederichs S, Haber DA (2006) Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res 66(12):6097–6104PubMedGoogle Scholar
  69. 69.
    Kuchenbauer F et al (2008) In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res 18(11):1787–1797PubMedGoogle Scholar
  70. 70.
    Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138(4):673–684PubMedCentralPubMedGoogle Scholar
  71. 71.
    Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315(5818):1576–1579PubMedCentralPubMedGoogle Scholar
  72. 72.
    Bonci D et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14(11):1271–1277PubMedGoogle Scholar
  73. 73.
    Calin GA et al (2005) A microRNA signature asso­ciated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801PubMedGoogle Scholar
  74. 74.
    Calin GA et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529PubMedCentralPubMedGoogle Scholar
  75. 75.
    Stilgenbauer S et al (1998) Expressed sequences as candidates for a novel tumor suppressor gene at band 13q14 in B-cell chronic lymphocytic leukemia and mantle cell lymphoma. Oncogene 16(14):1891–1897PubMedGoogle Scholar
  76. 76.
    Kohlhammer H et al (2004) Genomic DNA-chip hybridization in t(11;14)-positive mantle cell lymphomas shows a high frequency of aberrations and allows a refined characterization of consensus regions. Blood 104(3):795–801PubMedGoogle Scholar
  77. 77.
    Bandi N et al (2009) miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res 69(13):5553–5559PubMedGoogle Scholar
  78. 78.
    Bandi N, Vassella E (2011) miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer 10:55PubMedCentralPubMedGoogle Scholar
  79. 79.
    Amaral FC et al (2009) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94(1):320–323PubMedGoogle Scholar
  80. 80.
    Bhattacharya R et al (2009) MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res 69(23):9090–9095PubMedCentralPubMedGoogle Scholar
  81. 81.
    Wada M et al (1999) Frequent chromosome arm 13q deletion in aggressive non-Hodgkin’s lymphoma. Leukemia 13(5):792–798PubMedGoogle Scholar
  82. 82.
    Harrison CJ et al (2003) Cytogenetics of multiple myeloma: interpretation of fluorescence in situ hybridization results. Br J Haematol 120(6):944–952PubMedGoogle Scholar
  83. 83.
    Bottoni A et al (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204(1):280–285PubMedGoogle Scholar
  84. 84.
    Zhang XJ et al (2010) Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J Hematol Oncol 3:46PubMedCentralPubMedGoogle Scholar
  85. 85.
    Musumeci M et al (2011) Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30(41):4231–4242PubMedGoogle Scholar
  86. 86.
    Porkka KP et al (2011) The miR-15a-miR-16-1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer 50(7):499–509PubMedGoogle Scholar
  87. 87.
    Leite KR et al (2011) MicroRNA expression profiles in the progression of prostate cancer-from high-grade prostate intraepithelial neoplasia to metastasis. Urol Oncol, DOI: 10.106/j.uroloncGoogle Scholar
  88. 88.
    Chim CS et al (2010) Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 31(4):745–750PubMedGoogle Scholar
  89. 89.
    Suzuki H et al (2010) Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis 31(12):2066–2073PubMedGoogle Scholar
  90. 90.
    Wang Z et al (2011) DNA hypermethylation of microRNA-34b/c has prognostic value for stage non-small cell lung cancer. Cancer Biol Ther 11(5):490–496PubMedGoogle Scholar
  91. 91.
    Migliore C et al (2008) MicroRNAs impair MET-mediated invasive growth. Cancer Res 68(24):10128–10136PubMedGoogle Scholar
  92. 92.
    Cai KM et al (2010) Hsa-miR-34c suppresses growth and invasion of human laryngeal carcinoma cells via targeting c-Met. Int J Mol Med 25(4):565–571PubMedGoogle Scholar
  93. 93.
    Toyota M et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132PubMedGoogle Scholar
  94. 94.
    Leucci E et al (2008) MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol 216(4):440–450PubMedGoogle Scholar
  95. 95.
    Kubo T et al (2011) Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res 17(15):4965–4974PubMedGoogle Scholar
  96. 96.
    Corney DC et al (2010) Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 16(4):1119–1128PubMedCentralPubMedGoogle Scholar
  97. 97.
    Chen X et al (2012) CpG island methylation status of miRNAs in esophageal squamous cell carcinoma. Int J Cancer 130(7):1607–1613PubMedGoogle Scholar
  98. 98.
    Wong TS et al (2008) Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 14(9):2588–2592PubMedGoogle Scholar
  99. 99.
    Lee KH et al (2009) Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9(3):293–301PubMedGoogle Scholar
  100. 100.
    Pallasch CP et al (2009) miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia. Blood 114(15):3255–3264PubMedGoogle Scholar
  101. 101.
    Roldo C et al (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24(29):4677–4684PubMedGoogle Scholar
  102. 102.
    Baffa R et al (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219(2):214–221PubMedGoogle Scholar
  103. 103.
    Neves R et al (2010) Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res Notes 3:219PubMedCentralPubMedGoogle Scholar
  104. 104.
    Wiklund ED et al (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 128(6):1327–1334PubMedGoogle Scholar
  105. 105.
    Suh SO et al (2011) MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 32(5):772–778PubMedGoogle Scholar
  106. 106.
    Karaayvaz M et al (2011) Prognostic significance of miR-215 in colon cancer. Clin Colorectal Cancer 10(4):340–347PubMedCentralPubMedGoogle Scholar
  107. 107.
    Earle JS et al (2010) Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn 12(4):433–440PubMedCentralPubMedGoogle Scholar
  108. 108.
    Kahlert C et al (2011) Invasion front-specific expression and prognostic significance of micro­RNA in colorectal liver metastases. Cancer Sci 102(10):1799–1807PubMedGoogle Scholar
  109. 109.
    Hu X et al (2009) A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol 114(3):457–464PubMedGoogle Scholar
  110. 110.
    Tellez CS et al (2011) EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 71(8):3087–3097PubMedCentralPubMedGoogle Scholar
  111. 111.
    Xi Y et al (2006) Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2:113–121PubMedGoogle Scholar
  112. 112.
    Ceppi P et al (2010) Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res 8(9):1207–1216PubMedGoogle Scholar
  113. 113.
    Davalos V et al (2011) Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31(16):2062–2074PubMedCentralPubMedGoogle Scholar
  114. 114.
    Leaderer D et al (2011) Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int J Mol Epidemiol Genet 2(1):9–18PubMedCentralPubMedGoogle Scholar
  115. 115.
    Melo SA et al (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18(4):303–315PubMedGoogle Scholar
  116. 116.
    Merritt WM et al (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359(25):2641–2650PubMedCentralPubMedGoogle Scholar
  117. 117.
    Bahubeshi A, Tischkowitz M, Foulkes WD (2011) miRNA processing and human cancer: DICER1 cuts the mustard. Sci Transl Med 3(111):111ps46PubMedGoogle Scholar
  118. 118.
    Hill DA et al (2009) DICER1 mutations in familial pleuropulmonary blastoma. Science 325(5943):965PubMedCentralPubMedGoogle Scholar
  119. 119.
    Karube Y et al (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96(2):111–115PubMedGoogle Scholar
  120. 120.
    Faber C et al (2011) Overexpression of Dicer predicts poor survival in colorectal cancer. Eur J Cancer 47(9):1414–1419PubMedGoogle Scholar
  121. 121.
    Martin MG, Payton JE, Link DC (2009) Dicer and outcomes in patients with acute myeloid leukemia (AML). Leuk Res 33(8):e127PubMedGoogle Scholar
  122. 122.
    Klein U et al (2010) The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17(1):28–40PubMedGoogle Scholar
  123. 123.
    Lujambio A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105(36):13556–13561PubMedCentralPubMedGoogle Scholar
  124. 124.
    Thorstensen L et al (2000) Evaluation of 1p losses in primary carcinomas, local recurrences and peripheral metastases from colorectal cancer patients. Neoplasia 2(6):514–522PubMedCentralPubMedGoogle Scholar
  125. 125.
    Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022PubMedGoogle Scholar
  126. 126.
    Shimono Y et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603PubMedCentralPubMedGoogle Scholar
  127. 127.
    Shinozaki A et al (2010) Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res 70(11):4719–4727PubMedGoogle Scholar
  128. 128.
    de Krijger I et al (2011) MicroRNAs in colorectal cancer metastasis. J Pathol 224(4):438–447PubMedGoogle Scholar
  129. 129.
    Duan R, Pak C, Jin P (2007) Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 16(9):1124–1131PubMedGoogle Scholar
  130. 130.
    Martello G et al (2010) A microRNA targeting dicer for metastasis control. Cell 141(7):1195–1207PubMedGoogle Scholar
  131. 131.
    Kumar MS et al (2009) Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 23(23):2700–2704PubMedGoogle Scholar
  132. 132.
    Reimers M, Carey VJ (2006) Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol 411:119–134PubMedGoogle Scholar
  133. 133.
    Ji H et al (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26(11):1293–1300PubMedCentralPubMedGoogle Scholar
  134. 134.
    Kulakovskiy IV et al (2010) Deep and wide digging for binding motifs in ChIP-Seq data. Bioinformatics 26(20):2622–2623PubMedGoogle Scholar
  135. 135.
    Fejes AP et al (2008) FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24(15):1729–1730PubMedGoogle Scholar
  136. 136.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372PubMedGoogle Scholar
  137. 137.
    Bailey TL (2002) Discovering novel sequence motifs with MEME. Curr Protoc Bioinformatics  Chapter 2:Unit 2 4
  138. 138.
    Mackowiak SD (2011) Identification of novel and known miRNAs in deep-sequencing data with miRDeep2. Curr Protoc Bioinformatics  Chapter 12:Unit 12 10
  139. 139.
    Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39(Web Server issue):W132–W138PubMedCentralPubMedGoogle Scholar
  140. 140.
    Lagana A et al (2009) miRo: a miRNA knowledge base. Database (Oxford) 2009:bap008Google Scholar
  141. 141.
    Corcoran DL et al (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12(8):R79PubMedCentralPubMedGoogle Scholar
  142. 142.
    Saeed AI et al (2006) TM4 microarray software suite. Methods Enzymol 411:134–193PubMedGoogle Scholar
  143. 143.
    Bunz F et al (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282(5393):1497–1501PubMedGoogle Scholar
  144. 144.
    Hoh J et al (2002) The p53MH algorithm and its application in detecting p53-responsive genes. Proc Natl Acad Sci U S A 99(13):8467–8472PubMedCentralPubMedGoogle Scholar
  145. 145.
    Cawley S et al (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116(4):499–509PubMedGoogle Scholar
  146. 146.
    Smeenk L et al (2008) Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res 36(11):3639–3654PubMedCentralPubMedGoogle Scholar
  147. 147.
    Velculescu VE et al (1995) Serial analysis of gene expression. Science 270(5235):484–487PubMedGoogle Scholar
  148. 148.
    Wei CL et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124(1):207–219PubMedGoogle Scholar
  149. 149.
    Friedman RC et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105PubMedGoogle Scholar
  150. 150.
    Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500PubMedGoogle Scholar
  151. 151.
    Kertesz M et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284PubMedGoogle Scholar
  152. 152.
    Miranda KC et al (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217PubMedGoogle Scholar
  153. 153.
    Alexiou P et al (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25(23):3049–3055PubMedGoogle Scholar
  154. 154.
    Baek D et al (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71PubMedCentralPubMedGoogle Scholar
  155. 155.
    Selbach M et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63PubMedGoogle Scholar
  156. 156.
    Beitzinger M et al (2007) Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4(2):76–84PubMedGoogle Scholar
  157. 157.
    Hendrickson DG et al (2008) Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS One 3(5):e2126PubMedCentralPubMedGoogle Scholar
  158. 158.
    Karginov FV et al (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104(49):19291–19296PubMedCentralPubMedGoogle Scholar
  159. 159.
    Chi SW et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486PubMedCentralPubMedGoogle Scholar
  160. 160.
    Hafner M et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141PubMedCentralPubMedGoogle Scholar
  161. 161.
    Orom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43(2):162–165PubMedGoogle Scholar
  162. 162.
    Orom UA, Lund AH (2010) Experimental identification of microRNA targets. Gene 451(1–2):1–5PubMedGoogle Scholar
  163. 163.
    Cummins JM et al (2006) The colorectal microRNAome. Proc Natl Acad Sci U S A 103(10):3687–3692PubMedCentralPubMedGoogle Scholar
  164. 164.
    Tazawa H et al (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104(39):15472–15477PubMedCentralPubMedGoogle Scholar
  165. 165.
    Ong SE et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedGoogle Scholar
  166. 166.
    Chen QR et al (2011) Systematic proteome analysis identifies transcription factor YY1 as a direct target of miR-34a. J Proteome Res 10(2):479–487PubMedCentralPubMedGoogle Scholar
  167. 167.
    Prosser HM et al (2011) A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nat Biotechnol 29(9):840–845PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sabine Hünten
    • 1
  • Helge Siemens
    • 1
  • Markus Kaller
    • 1
  • Heiko Hermeking
    • 1
  1. 1.Experimental and Molecular Pathology, Institute of PathologyLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations