MicroRNA-Regulated Networks: The Perfect Storm for Classical Molecular Biology, the Ideal Scenario for Systems Biology

  • Julio Vera
  • Xin Lai
  • Ulf Schmitz
  • Olaf Wolkenhauer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 774)


MicroRNAs (miRNAs) are involved in many regulatory pathways some of which are complex networks enriched in regulatory motifs like positive or negative feedback loops or coherent and incoherent feedforward loops. Their complexity makes the understanding of their regulation difficult and the interpretation of experimental data cumbersome. In this book chapter we claim that systems biology is the appropriate approach to investigate the regulation of these miRNA-regulated networks. Systems biology is an interdisciplinary approach by which biomedical questions on biochemical networks are addressed by integrating experiments with mathematical modelling and simulation. We here introduce the foundations of the systems biology approach, the basic theoretical and computational tools used to perform model-based analyses of miRNA-regulated networks and review the scientific literature in systems biology of miRNA regulation, with a focus on cancer.


miRNA regulated networks miRNA target hub miRNA cluster Feedback loop Feedforward loop Post-transcriptional regulation miRNA network motifs Kinetic models Bistability Ultrasensitivity 



This work is supported by the German Federal Ministry of Education and Research (BMBF) as part of the projects e: Bio-miRSys [C.N. 0316175A] and e: Bio-Metsys [C.N. 0316171].


  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  2. 2.
    Hudder A, Novak RF (2008) miRNAs: effectors of environmental influences on gene expression and disease. Toxicol Sci 103:228–240PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234PubMedCrossRefGoogle Scholar
  4. 4.
    Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105PubMedCrossRefGoogle Scholar
  5. 5.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Wolkenhauer O, Auffray C, Baltrusch S, Blüthgen N, Byrne H, Cascante M, Ciliberto A, Dale T, Drasdo D, Fell D et al (2010) Systems biologists seek fuller integration of systems biology approaches in new cancer research programs. Cancer Res 70:12–13PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A et al (2009) Human protein reference database–2009 update. Nucleic Acids Res 37:D767–D772PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12:192–197PubMedCrossRefGoogle Scholar
  11. 11.
    Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk – database: prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. J Biomed Inform 44:839–847PubMedCrossRefGoogle Scholar
  12. 12.
    Alexiou P, Vergoulis T, Gleditzsch M, Prekas G, Dalamagas T, Megraw M, Grosse I, Sellis T, Hatzigeorgiou AG (2010) miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Res 38:D137–D141PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Wang J, Lu M, Qiu C, Cui Q (2010) TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 38:D119–D122PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bandyopadhyay S, Bhattacharyya M (2010) PuTmiR: a database for extracting neighboring transcription factors of human microRNAs. BMC Bioinformatics 11:190PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM et al (2009) The systems biology graphical notation. Nat Biotechnol 27:735–741PubMedCrossRefGoogle Scholar
  16. 16.
    Lai X, Schmitz U, Gupta S, Bhattacharya A, Kunz M, Wolkenhauer O, Vera J (2012) Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Res 40:8818–8834Google Scholar
  17. 17.
    Jung Y-S, Qian Y, Chen X (2010) Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 22:1003–1012PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Gartel AL, Tyner AL (1999) Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 246:280–289PubMedCrossRefGoogle Scholar
  19. 19.
    Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, Zhan R, He X (2010) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29:2302–2308PubMedCrossRefGoogle Scholar
  21. 21.
    Vera J, Balsa-Canto E, Wellstead P, Banga JR, Wolkenhauer O (2007) Power-law models of signal transduction pathways. Cell Signal 19:1531–1541PubMedCrossRefGoogle Scholar
  22. 22.
    Vera J, Rath O, Balsa-Canto E, Banga JR, Kolch W, Wolkenhauer O (2010) Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models. Mol Biosyst 6:2174–2191PubMedCrossRefGoogle Scholar
  23. 23.
    Kholodenko B, Yaffe MB, Kolch W (2012) Computational approaches for analyzing information flow in biological networks. Sci Signal 5:re1PubMedGoogle Scholar
  24. 24.
    Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger PK (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5:331PubMedCentralPubMedGoogle Scholar
  25. 25.
    Vera J, Wolkenhauer O (2008) A system biology approach to understand functional activity of cell communication systems. Methods Cell Biol 90:399–415PubMedCrossRefGoogle Scholar
  26. 26.
    Maiwald T, Timmer J (2008) Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics 24:2037–2043PubMedCrossRefGoogle Scholar
  27. 27.
    Mendes P, Hoops S, Sahle S, Gauges R, Dada J, Kummer U (2009) Computational modeling of biochemical networks using COPASI. Methods Mol Biol 500:17–59PubMedCrossRefGoogle Scholar
  28. 28.
    Savageau MA, Coelho PMBM, Fasani RA, Tolla DA, Salvador A (2009) Phenotypes and tolerances in the design space of biochemical systems. Proc Natl Acad Sci U S A 106:6435–6440PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3:e131PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci U S A 105:19678–19683PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Lai X, Wolkenhauer O, Vera J (2012) Modelling miRNA regulation in cancer signalling systems: miR-34a regulation of the p53/Sirt1 signalling module. In: Computational modelling of signalling networks, Liu X, Betterton M (eds.), Humana press 2012, ISBN: 9781617798230Google Scholar
  32. 32.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedCrossRefGoogle Scholar
  33. 33.
    Nikolov S, Yankulova E, Wolkenhauer O, Petrov V (2007) Principal difference between stability and structural stability (robustness) as used in systems biology. Nonlinear Dynamics Psychol Life Sci 11:413–433PubMedGoogle Scholar
  34. 34.
    Sorribas A, Hernández-Bermejo B, Vilaprinyo E, Alves R (2007) Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol Bioeng 97:1259–1277PubMedCrossRefGoogle Scholar
  35. 35.
    Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26:753–767PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Osella M, Bosia C, Corá D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7:e1001101PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A 100:11980–11985PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Re A, Corá D, Taverna D, Caselle M (2009) Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human. Mol Biosyst 5:854–867PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511PubMedCrossRefGoogle Scholar
  40. 40.
    Saetrom P, Heale BS, Snøve O Jr, Aagaard L, Alluin J, Rossi JJ (2007) Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35:2333–2342PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816PubMedCrossRefGoogle Scholar
  42. 42.
    Rippe V, Dittberner L, Lorenz VN, Drieschner N, Nimzyk R, Sendt W, Junker K, Belge G, Bullerdiek J (2010) The two stem cell microRNA gene clusters C19MC and miR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas. PLoS One 5:e9485PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Weber MJ (2005) New human and mouse microRNA genes found by homology search. FEBS J 272:59–73PubMedCrossRefGoogle Scholar
  44. 44.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843PubMedCrossRefGoogle Scholar
  45. 45.
    Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and applications. Williams & Wilkins, BaltimoreGoogle Scholar
  46. 46.
    Saltelli A, Tarantola S, Campolongo F (2000) Sensitivity analysis as an ingredient of modeling. Stat Sci 15:377–395CrossRefGoogle Scholar
  47. 47.
    Levine E, Ben Jacob E, Levine H (2007) Target-specific and global effectors in gene regulation by MicroRNA. Biophys J 93:L52–L54PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379PubMedCrossRefGoogle Scholar
  49. 49.
    Nissan T, Parker R (2008) Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. RNA 14:1480–1491PubMedCrossRefGoogle Scholar
  50. 50.
    Whichard ZL, Motter AE, Stein PJ, Corey SJ (2011) Slowly produced microRNAs control protein levels. J Biol Chem 286:4742–4748PubMedCrossRefGoogle Scholar
  51. 51.
    Zinovyev A, Morozova N, Nonne N, Barillot E, Harel-Bellan A, Gorban AN (2010) Dynamical modeling of microRNA action on the protein translation process. BMC Syst Biol 4:13PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43:854–859PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Sinha AU, Kaimal V, Chen J, Jegga AG (2008) Dissecting microregulation of a master regulatory network. BMC Genomics 9:88PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Martinez NJ, Walhout AJM (2009) The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays 31:435–445PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Xu F, Liu Z, Shen J, Wang R (2009) Dynamics of microRNA-mediated motifs. IET Syst Biol 3:496–504PubMedCrossRefGoogle Scholar
  56. 56.
    Xie Z-R, Yang H-T, Liu W-C, Hwang M-J (2007) The role of microRNA in the delayed negative feedback regulation of gene expression. Biochem Biophys Res Commun 358:722–726PubMedCrossRefGoogle Scholar
  57. 57.
    Nikolov S, Vera J, Schmitz U, Wolkenhauer O (2011) A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks. Theory Biosci  =  Theorie in Den Biowissenschaften 130:55–69CrossRefGoogle Scholar
  58. 58.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2:e363PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217PubMedCrossRefGoogle Scholar
  60. 60.
    Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18:549–557PubMedCrossRefGoogle Scholar
  61. 61.
    Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179PubMedCrossRefGoogle Scholar
  62. 62.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedCrossRefGoogle Scholar
  63. 63.
    Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906PubMedCrossRefGoogle Scholar
  64. 64.
    Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070PubMedCrossRefGoogle Scholar
  65. 65.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033PubMedCrossRefGoogle Scholar
  66. 66.
    Khanin R, Vinciotti V (2008) Computational modeling of post-transcriptional gene regulation by microRNAs. J Comput Biol 15:305–316PubMedCrossRefGoogle Scholar
  67. 67.
    Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L, San José-Eneriz E, Abizanda G, Rodríguez-Otero P, Fortes P et al (2009) Epigenetic silencing of the tumour ­suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute ­lymphoblastic leukemia. Cancer Res 69:4443–4453PubMedCrossRefGoogle Scholar
  68. 68.
    Furuta M, Kozaki K, Tanaka S, Arii S, Imoto I, Inazawa J (2010) miR-124 and miR-203 are epigenetically silenced tumour-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 31:766–776PubMedCrossRefGoogle Scholar
  69. 69.
    Fowler A, Thomson D, Giles K, Maleki S, Mreich E, Wheeler H, Leedman P, Biggs M, Cook R, Little N et al (2011) miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur J Cancer 47:953–963PubMedCrossRefGoogle Scholar
  70. 70.
    Vohradsky J, Panek J, Vomastek T (2010) Numerical modelling of microRNA-mediated mRNA decay identifies novel mechanism of microRNA controlled mRNA ­downregulation. Nucleic Acids Res 38:4579–4585PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Julio Vera
    • 1
  • Xin Lai
    • 1
  • Ulf Schmitz
    • 1
  • Olaf Wolkenhauer
    • 1
    • 2
  1. 1.Department of Systems Biology and Bioinformatics, Institute of Computer ScienceUniversity of RostockRostockGermany
  2. 2.Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research CentreStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations