MicroRNA Target Prediction and Validation

  • William Ritchie
  • John E. J. Rasko
  • Stéphane Flamant
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 774)

Abstract

The accurate prediction and validation of microRNA targets is essential to understanding the function of microRNAs. Computational predictions indicate that all human genes may be regulated by microRNAs, with each microRNA possibly targeting thousands of genes. Here we discuss computational and experimental methods for identifying mammalian microRNA targets. We describe microRNA target prediction resources and procedures that are suitable for experiments where more accurate prediction of microRNA targets is more important than detecting all putative targets. We then discuss experimental methods for identifying and validating microRNA target genes, with an emphasis on the target reporter assay as the method of choice for specifically testing functional microRNA target sites.

Keywords

microRNA Target genes microRNA expression Gene regulation Experimental validation Target prediction algorithms Bioinformatics 

Notes

Acknowledgments

The authors thank DIM Biothérapies, Stem Pole Ile-de-France, Cure The Future (Cell and Gene Trust), the Rebecca L Cooper Medical Research Foundation and the Cancer Council NSW [Project Grant 1006260] and the Australian National Health and Medical Research Council [Training Fellowship 571156] for support.

References

  1. 1.
    Lai EC (2002) Micro RNAs are complementary to 3′UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364PubMedCrossRefGoogle Scholar
  2. 2.
    John B, Enright AJ, Aravin A et al (2004) Human MicroRNA targets. PLoS Biol 2:e363PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284PubMedCrossRefGoogle Scholar
  5. 5.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  6. 6.
    Grimson A, Farh KK, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ritchie W, Flamant S, Rasko JE (2009) MicroRNA target prediction: traps for the unwary. Nat Methods 6:397–398PubMedCrossRefGoogle Scholar
  8. 8.
    Ritchie W, Flamant S, Rasko JE (2010) MimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics 26:223–227PubMedCrossRefGoogle Scholar
  9. 9.
    Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500PubMedCrossRefGoogle Scholar
  10. 10.
    Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36PubMedCrossRefGoogle Scholar
  11. 11.
    Tsang JS, Ebert MS, van Oudenaarden A (2010) Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 38:140–153Google Scholar
  12. 12.
    Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefGoogle Scholar
  13. 13.
    Ritchie W, Rajasekhar M, Flamant S et al (2009) Conserved expression patterns predict microRNA targets. PLoS Comput Biol 5:e1000513PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Selbach M, Schwanhausser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63PubMedCrossRefGoogle Scholar
  15. 15.
    Brennecke J, Stark A, Russell RB et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  17. 17.
    Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefGoogle Scholar
  18. 18.
    Brennecke J, Hipfner DR, Stark A et al (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36PubMedCrossRefGoogle Scholar
  19. 19.
    Orom UA, Lund AH (2010) Experimental identification of microRNA targets. Gene 451:1–5PubMedCrossRefGoogle Scholar
  20. 20.
    Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17:1169–1174PubMedCrossRefGoogle Scholar
  21. 21.
    Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Doench JG, Petersen CP, Sharp PA (2003) SiRNAs can function as miRNAs. Genes Dev 17:438–442PubMedCrossRefGoogle Scholar
  23. 23.
    Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100:9779–9784PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178PubMedCrossRefGoogle Scholar
  25. 25.
    Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596PubMedCrossRefGoogle Scholar
  26. 26.
    Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689PubMedCrossRefGoogle Scholar
  27. 27.
    Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726PubMedCrossRefGoogle Scholar
  28. 28.
    Standart N, Jackson RJ (2007) MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 21:1975–1982PubMedCrossRefGoogle Scholar
  29. 29.
    Guo H, Ingolia NT, Weissman JS et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Farh KK, Grimson A, Jan C et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821PubMedCrossRefGoogle Scholar
  31. 31.
    Vinther J, Hedegaard MM, Gardner PP et al (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34:e107PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedCrossRefGoogle Scholar
  33. 33.
    Baek D, Villen J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455:64–71PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Zhu S, Si ML, Wu H et al (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336PubMedCrossRefGoogle Scholar
  35. 35.
    Tian Z, Greene AS, Pietrusz JL et al (2008) MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18:404–411PubMedCrossRefGoogle Scholar
  36. 36.
    Iliopoulos D, Malizos KN, Oikonomou P et al (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 3:e3740PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Jovanovic M, Reiter L, Picotti P et al (2010) A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nat Methods 7:837–842PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999PubMedCrossRefGoogle Scholar
  39. 39.
    Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588PubMedCrossRefGoogle Scholar
  40. 40.
    Krijgsveld J, Ketting RF, Mahmoudi T et al (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931PubMedCrossRefGoogle Scholar
  41. 41.
    Beitzinger M, Peters L, Zhu JY et al (2007) Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4:76–84PubMedCrossRefGoogle Scholar
  42. 42.
    Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13:1198–1204PubMedCrossRefGoogle Scholar
  43. 43.
    Karginov FV, Conaco C, Xuan Z et al (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104:19291–19296PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Hendrickson DG, Hogan DJ, Herschlag D et al (2008) Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS One 3:e2126PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Landthaler M, Gaidatzis D, Rothballer A et al (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14:2580–2596PubMedCrossRefGoogle Scholar
  46. 46.
    Wang WX, Wilfred BR, Hu Y et al (2010) Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. RNA 16:394–404PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang L, Ding L, Cheung TH et al (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Mourelatos Z, Dostie J, Paushkin S et al (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728PubMedCrossRefGoogle Scholar
  49. 49.
    Tan LP, Seinen E, Duns G et al (2009) A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res 37:e137PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Chi SW, Zang JB, Mele A et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486PubMedCentralPubMedGoogle Scholar
  52. 52.
    Zisoulis DG, Lovci MT, Wilbert ML et al (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17:173–179PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Leung AK, Young AG, Bhutkar A et al (2011) Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol 18:237–244PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Duursma AM, Kedde M, Schrier M et al (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877PubMedCrossRefGoogle Scholar
  56. 56.
    Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105:14879–14884PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Tay Y, Zhang J, Thomson AM et al (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128PubMedCrossRefGoogle Scholar
  58. 58.
    Schnall-Levin M, Zhao Y, Perrimon N et al (2010) Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs. Proc Natl Acad Sci U S A 107:15751–15756PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Schnall-Levin M, Rissland OS, Johnston WK et al (2011) Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res 21:1395–1403PubMedCrossRefGoogle Scholar
  60. 60.
    Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS One 6:e18067PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217PubMedCrossRefGoogle Scholar
  62. 62.
    Orom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43:162–165PubMedCrossRefGoogle Scholar
  63. 63.
    Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471PubMedCrossRefGoogle Scholar
  64. 64.
    Christoffersen NR, Shalgi R, Frankel LB et al (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17:236–245PubMedCrossRefGoogle Scholar
  65. 65.
    Hsu RJ, Yang HJ, Tsai HJ (2009) Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res 37:e77PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220PubMedCrossRefGoogle Scholar
  67. 67.
    Nonne N, Ameyar-Zazoua M, Souidi M et al (2010) Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res 38:e20PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Vatolin S, Navaratne K, Weil RJ (2006) A novel method to detect functional microRNA targets. J Mol Biol 358:983–996PubMedCrossRefGoogle Scholar
  69. 69.
    Andachi Y (2008) A novel biochemical method to identify target genes of individual microRNAs: identification of a new Caenorhabditis elegans let-7 target. RNA 14:2440–2451PubMedCrossRefGoogle Scholar
  70. 70.
    Llave C, Xie Z, Kasschau KD et al (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056PubMedCrossRefGoogle Scholar
  71. 71.
    Addo-Quaye C, Eshoo TW, Bartel DP et al (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    German MA, Pillay M, Jeong DH et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946PubMedCrossRefGoogle Scholar
  73. 73.
    Franco-Zorrilla JM, Del Toro FJ, Godoy M et al (2009) Genome-wide identification of small RNA targets based on target enrichment and microarray hybridizations. Plant J 59:840–850PubMedCrossRefGoogle Scholar
  74. 74.
    Karginov FV, Cheloufi S, Chong MM et al (2010) Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol Cell 38:781–788PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Li YF, Zheng Y, Addo-Quaye C et al (2010) Transcriptome-wide identification of microRNA targets in rice. Plant J 62:742–759PubMedCrossRefGoogle Scholar
  76. 76.
    Shin C, Nam JW, Farh KK et al (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38:789–802PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Bracken CP, Szubert JM, Mercer TR et al (2011) Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 39:5658–5668PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Jiao Y, Riechmann JL, Meyerowitz EM (2008) Transcriptome-wide analysis of uncapped mRNAs in Arabidopsis reveals regulation of mRNA degradation. Plant Cell 20:2571–2585PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Xiao C, Calado DP, Galler G et al (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146–159PubMedCrossRefGoogle Scholar
  80. 80.
    Zhao Y, Ransom JF, Li A et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303–317PubMedCrossRefGoogle Scholar
  81. 81.
    Johnnidis JB, Harris MH, Wheeler RT et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129PubMedCrossRefGoogle Scholar
  82. 82.
    Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Patrick DM, Zhang CC, Tao Y et al (2010) Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev 24:1614–1619PubMedCrossRefGoogle Scholar
  84. 84.
    Park CY, Choi YS, McManus MT (2010) Analysis of microRNA knockouts in mice. Hum Mol Genet 19:R169–R175PubMedCrossRefGoogle Scholar
  85. 85.
    Prosser HM, Koike-Yusa H, Cooper JD et al (2011) A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nat Biotechnol 29:840–845PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Tsang JS, Ebert MS, van Oudenaarden A (2010) Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 38:140–153PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • William Ritchie
    • 1
  • John E. J. Rasko
    • 1
    • 2
  • Stéphane Flamant
    • 3
  1. 1.Gene and Stem Cell Therapy Program, Centenary InstituteUniversity of SydneyNewtownAustralia
  2. 2.Cell and Molecular TherapiesRPA HospitalNewtownAustralia
  3. 3.INSERM UMR-935VillejuifFrance

Personalised recommendations