Bioinformatics, Non-coding RNAs and Its Possible Application in Personalized Medicine

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 774)

Abstract

Non-coding RNAs are important actors in human biology. A massive amount of data has been created and manipulated, and important findings have been extracted thanks in part to bioinformatics approaches and consequent experimental validation; many of these results are for a specific class of non-coding RNAs, the microRNAs (miRNAs), that are important regulators of gene expression although their transcriptional regulation is not yet well understood. Their involvement in cancer development and progression makes the related research field an integrated one, composed of bioinformaticians, clinicians, statisticians and biologists, as well as informaticians and data miners that cure data manipulation and storage especially due to the output of the latest technologies, like the Next Generation Sequencers.

In this chapter we report the main miRNA findings of the last 10 years in terms of identification and prediction techniques, data generation and manipulation methods, as well as possible use in clinical practice.

Keywords

Non-coding RNA microRNAs Cancer Biomarker Prognosis Prediction Personalized medicine Target prediction Deep sequencing and network 

References

  1. 1.
    Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Spec No 1):R17–R29, PMID: 16651366PubMedCrossRefGoogle Scholar
  2. 2.
    Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9(10):775–789PubMedCrossRefGoogle Scholar
  3. 3.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Wojcik SE, Rossi S, Shimizu M, Nicoloso MS, Cimmino A, Alder H, Herlea V, Rassenti LZ, Rai KR, Kipps TJ, Keating MJ, Croce CM, Calin GA (2010) Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis 31(2):208–215PubMedCrossRefGoogle Scholar
  5. 5.
    Rossi S, Kopetz S, Davuluri R, Hamilton SR, Calin GA (2010) MicroRNAs, ultraconserved genes and colorectal cancers. Int J Biochem Cell Biol 42(8):1291–1297PubMedCrossRefGoogle Scholar
  6. 6.
    Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, Marchesini J, Mascellani N, Sana ME, Abu Jarour R, Desponts C, Teitell M, Baffa R, Aqeilan R, Iorio MV, Taccioli C, Garzon R, Di Leva G, Fabbri M, Catozzi M, Previati M, Ambs S, Palumbo T, Garofalo M, Veronese A, Bottoni A, Gasparini P, Harris CC, Visone R, Pekarsky Y, de la Chapelle A, Bloomston M, Dillhoff M, Rassenti LZ, Kipps TJ, Huebner K, Pichiorri F, Lenze D, Cairo S, Buendia MA, Pineau P, Dejean A, Zanesi N, Rossi S, Calin GA, Liu CG, Palatini J, Negrini M, Vecchione A, Rosenberg A, Croce CM (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20(5):589–599PubMedCrossRefGoogle Scholar
  7. 7.
    Ferracin M, Pedriali M, Veronese A, Zagatti B, Gafà R, Magri E, Lunardi M, Munerato G, Querzoli G, Maestri I, Ulazzi L, Nenci I, Croce CM, Lanza G, Querzoli P, Negrini M (2011) MicroRNA profiling for the identification of cancers with unknown primary tissue-of-origin. J Pathol 225(1):43–53. doi: 10.1002/path.2915 PubMedCrossRefGoogle Scholar
  8. 8.
    Mihaela Z, Jaskiewicz L (2009) Computational biology of small regulatory RNAs ( chapter 5). In: Appel RD, Ernest F, Appel RD (eds) Bioinformatics: a Swiss perspective, 1st edn. World Scientific Publishing Company, Singapore. ISBN 9812838775Google Scholar
  9. 9.
    Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151, PMID: 19715439PubMedCrossRefGoogle Scholar
  10. 10.
    Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967PubMedCrossRefGoogle Scholar
  11. 11.
    Mathelier A, Carbone A (2010) MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 26(18):2226–2234PubMedCrossRefGoogle Scholar
  12. 12.
    Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35(Web Server issue):W339–W344, PMID: 17553836PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, Tuschl T, van Nimwegen E, Zavolan M (2005) Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6:267, PMID:16274478PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Batuwita R, Palade V (2009) microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25(8):989–995PubMedCrossRefGoogle Scholar
  15. 15.
    Friedlander MR et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415PubMedCrossRefGoogle Scholar
  16. 16.
    Moxon S, Moulton V, Kim JT (2008) A scoring matrix approach to detecting miRNA target sites. Algorithms Mol Biol 3:3, PMID: 18377655PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Hackenberg M, Sturm M, Langenberger D, Falcón-Pérez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37(Web Server issue):W68–W76, PMID: 19433510PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Pantano L, Estivill X, Martí E (2010) SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res 38(5):e34PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Huang PJ, Liu YC, Lee CC, Lin WC, Gan RR, Lyu PC, Tang P (2010) DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res 38(Web Server issue):W385–W391, PMID: 20478825PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Zhu E, Zhao F, Xu G, Hou H, Zhou L, Li X, Sun Z, Wu J (2010) mirTools: microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids Res 38(Web Server issue):W392–W397PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89PubMedCrossRefGoogle Scholar
  22. 22.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864PubMedCrossRefGoogle Scholar
  23. 23.
    Lai EC, Tomancak P, Williams RW, Rubin GM (2003) Computational identification of Drosophila microRNA genes. Genome Biology 4:R42. doi:10.1186/gb-2003-4-7-r42PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, Vos J, Verloop R, van de Wetering M, Guryev V, Takada S, van Zonneveld A, Mano H, Plasterk R, Cuppen E (2006) Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res 16:1289–1298PubMedCrossRefGoogle Scholar
  25. 25.
    Pfeffer S, Zavolan M, Grasser F, Chien M, Russo J, Ju J, John B, Enright A, Marks D, Sander C, Tuschl T (2004) Identification of virus encoded microRNAs. Science 304:734–736PubMedCrossRefGoogle Scholar
  26. 26.
    Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24PubMedCrossRefGoogle Scholar
  27. 27.
    Mathews DH, Turner DH, Zuker M (2007) RNA secondary structure prediction. Curr Protoc Nucleic Acid Chem;  Chapter 11:Unit 11.2. PMID: 18428968
  28. 28.
    Hofacker I, Fekete M, Flamm C, Huynen M, Rauscher S, Stolorz P, Stadler P (1998) Automated detection of conserved RNA structure elements in complete RNA virus genomes. Nucleic Acids Res 26:3825–3826PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Nam J, Shin K, Han J, Lee Y, Kim V, Zhang B (2005) Human microRNA prediction through a probabilistic colearning model of sequence and structure. Nucleic Acids Res 33:3570–3581PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14:R121–R132PubMedCrossRefGoogle Scholar
  31. 31.
    Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24Google Scholar
  32. 32.
    Lai EC, Tomancak P, WilliamsRW, Rubin GM (2003) Computational identification of Drosophila microRNA gene. Genome Biology 4:R42. doi:10.1186/gb-2003-4-7-r42Google Scholar
  33. 33.
    Doran J, Strauss WM (2007) Bio-informatic trends for the determination of miRNA-target interactions in mammals. DNA Cell Biol 26(5):353–360PubMedCrossRefGoogle Scholar
  34. 34.
    Chang DT, Wang CC, Chen JW (2008) Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics 9 Suppl 12:S2Google Scholar
  35. 35.
    Brameier M, Wiuf C (2007) Ab initio identification of human microRNAs based on structure motifs. BMC Bioinformatics 8:478Google Scholar
  36. 36.
    John B, Enright A, Aravin A, Tuschl T, Sander C, Marks D (2004) Human microRNA targets. PLoS Biol 2:e363PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Vatolin S, Navaratne K, Weil RJ (2006) A novel method to detect functional microRNA targets. J Mol Biol 358(4):983–996PubMedCrossRefGoogle Scholar
  38. 38.
    Rajewsky N (2006) MicroRNA target predictions in animals. Nat Genet 38:S8–S13PubMedCrossRefGoogle Scholar
  39. 39.
    Sood P, Krek A, Zavolan M, Macino G, Rajewsky N (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A 103(8):2746–2751PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Ragan C, Cloonan N, Grimmond SM, Zuker M, Ragan MA (2009) Transcriptome-wide prediction of miRNA targets in human and mouse using FASTH. PLoS One 4(5):e5745Google Scholar
  41. 41.
    Lewis B, Burge C, Bartel D (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  42. 42.
    Brennecke J, Stark A, Russell R, Cohen S (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Krützfeldt J, Poy MN, Stoffel M (2006) Strategies to determine the biological function of microRNAs. Nat Genet 38(Suppl):S14–S19PubMedCrossRefGoogle Scholar
  44. 44.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell’Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101(32):11755–11760PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Calin GA, Croce CM (2009) Chronic lymphocytic leukemia: interplay between noncoding RNAs and protein-coding genes. Blood 114(23):4761–4770PubMedCrossRefGoogle Scholar
  47. 47.
    Fabbri M, Garzon R, Andreeff M, Kantarjian HM, Garcia-Manero G, Calin GA (2008) MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 22(6):1095–1105PubMedCrossRefGoogle Scholar
  48. 48.
    Taby R, Issa JP (2010) Cancer epigenetics. CA Cancer J Clin 60(6):376–392PubMedCrossRefGoogle Scholar
  49. 49.
    Edwards JK, Pasqualini R, Arap W, Calin GA (2010) MicroRNAs and ultraconserved genes as diagnostic markers and therapeutic targets in cancer and cardiovascular diseases. J Cardiovasc Transl Res 3(3):271–279PubMedCrossRefGoogle Scholar
  50. 50.
    Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N, Schackert HK, Görgens H, Hahn MM, Kamping EJ, Vreede L, Hoenselaar E, van der Looij E, Goossens M, Churchman M, Carvajal-Carmona L, Tomlinson IP, de Bruijn DR, Van Kessel AG, Kuiper RP (2010) Germline epigenetic silencing of the tumor suppressor gene PTPRJ in early-onset familial colorectal cancer. Gastroenterology 139(6):2221–2224PubMedCrossRefGoogle Scholar
  51. 51.
    Navarro A, Diaz T, Martinez A, Gaya A, Pons A, Gel B, Codony C, Ferrer G, Martinez C, Montserrat E, Monzo M Regulation of JAK2 by miR-135a: prognostic impact in classic Hodgkin lymphoma. Blood 114(14):2945–2951Google Scholar
  52. 52.
    Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T, Flomenberg N, Marcucci G, Calin GA, Kornblau SM, Kantarjian H, Bloomfield CD, Andreeff M, Croce CM (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111(6):3183–3189Google Scholar
  53. 53.
    Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, Ligon KL, Kesari S, Esau C, Stephens RM, Tannous BA, Krichevsky AM (2011). Human glioma growth is controlled by microRNA-10b. Cancer Res 71(10):3563–3572Google Scholar
  54. 54.
    Schetter AJ, Okayama H, Harris CC (2012) The role of microRNAs in colorectal cancer. Cancer J 18(3):244–252Google Scholar
  55. 55.
    Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D, Fabbri M, Lerner S, Barron LL, Rassenti LZ, Jiang L, Xiao L, Hu J, Secchiero P, Zauli G, Volinia S, Negrini M, Wierda W, Kipps TJ, Plunkett W, Coombes KR, Abruzzo LV, Keating MJ, Calin GA (2010) microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 116(6):945–952Google Scholar
  56. 56.
    Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sañudo A, Camara-Lopes LH, Srougi M (2011) MicroRNA expression profiles in the progression of prostate cancer-from high-grade prostate intraepithelial neoplasia to metastasis. Urol Oncol 2011 Aug 29. [Epub ahead of print]Google Scholar
  57. 57.
    Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, Zakrzewski J, Blochin E, Rose A, Bogunovic D, Polsky D, Wei J, Lee P, Belitskaya-Levy I, Bhardwaj N, Osman I, Hernando E (2009) Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A 106(6):1814–1819Google Scholar
  58. 58.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688PubMedCrossRefGoogle Scholar
  59. 59.
    Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72(5–6):397–402PubMedCrossRefGoogle Scholar
  60. 60.
    Li J, Huang H, Sun L, Yang M, Pan C, Chen W, Wu D, Lin Z, Zeng C, Yao Y, Zhang P, Song E (2009) MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 15(12):3998–4008PubMedCrossRefGoogle Scholar
  61. 61.
    Hurst DR, Edmonds MD, Welch DR (2009) Meta­stamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69(19):7495–7498PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM, Lin CD, Liao YL, Wang JL, Chau YP, Hsu MT, Hsiao M, Huang HD, Tsou AP (2009) MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49(5):1571–1582PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.SIB Swiss Institute of Bioinformatics, Bâtiment Génopode, Quartier SorgeLausanneSwitzerland
  2. 2.Department of Experimental Therapeutics, Unit 1950The University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations