Advertisement

Discovering Functional microRNA-mRNA Regulatory Modules in Heterogeneous Data

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 774)

Abstract

microRNAs (miRNAs) are small non-coding RNAs that cause mRNA degradation and translation inhibition. They are pivotal regulators of development and cellular homeostasis through their control of diverse processes. Recently, great efforts have been made to elucidate many targets that are affected by miRNAs, but the functions of most miRNAs and their precise regulatory mechanisms remain elusive. With more and more matched expression profiles of miRNAs and mRNAs having been made available, it is of great interest to utilize both expression profiles and sequence information to discover the functional regulatory networks of miRNAs and their target mRNAs for potential biological processes that they may participate in. In this chapter, we first briefly review the computational methods for discovering miRNA targets and miRNA-mRNA regulatory modules, and then focus on a method of identifying functional miRNA-mRNA regulatory modules by integrating multiple data sets from different sources.

Keywords

miRNAs Functional miRNA-mRNA regulatory modules (FMRMs) Corr-LDA Cancer Microarray 

Notes

Acknowledgement

We thank Dr Jeffrey E. Green and Dr. Min Zhu for providing the data sets.

References

  1. 1.
    Ridley M (2006) Genome: the autobiography of a species in 23 chapters book description. Topeka Bindery, New YorkGoogle Scholar
  2. 2.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531PubMedCrossRefGoogle Scholar
  3. 3.
    Iorio MV et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070PubMedCrossRefGoogle Scholar
  4. 4.
    Yanaihara N et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198PubMedCrossRefGoogle Scholar
  5. 5.
    Porkka KP et al (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67(13):6130–6135PubMedCrossRefGoogle Scholar
  6. 6.
    Akao Y, Nakagawa Y, Naoe T (2007) MicroRNA-143 and −145 in colon cancer. DNA Cell Biol 26(5):311–320PubMedCrossRefGoogle Scholar
  7. 7.
    Yang H et al (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68(2):425–433PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang X et al (2009) Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer 124(12):2855–2863PubMedCrossRefGoogle Scholar
  9. 9.
    Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Papadopoulos GL et al (2009) The database of experimentally supported targets: a functional update of TarBase. Nucl Acids Res 37(suppl_1):D155–D158PubMedCrossRefGoogle Scholar
  11. 11.
    Xiao F et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucl Acids Res 37(suppl_1):D105–D110PubMedCrossRefGoogle Scholar
  12. 12.
    Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770PubMedCrossRefGoogle Scholar
  13. 13.
    Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500PubMedCrossRefGoogle Scholar
  14. 14.
    Hatzigeorgiou AG (2007) Same computational analysis, different miRNA target predictions. Nat Methods 4(3):191CrossRefGoogle Scholar
  15. 15.
    Griffiths-Jones S et al (2008) miRBase: tools for microRNA genomics. Nucl Acids Res 36(suppl_1):D154–D158PubMedGoogle Scholar
  16. 16.
    Yoon S, De Micheli G (2005) Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics 21(suppl_2):ii93–ii100PubMedGoogle Scholar
  17. 17.
    Huang JC et al (2007) Using expression profiling data to identify human microRNA targets. Nat Method 4(12):1045–1049CrossRefGoogle Scholar
  18. 18.
    Joung J-G et al (2007) Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics 23(9):1141–1147PubMedCrossRefGoogle Scholar
  19. 19.
    Tran D, Satou K, Ho T (2008) Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinform 9(Suppl 12):S5CrossRefGoogle Scholar
  20. 20.
    Peng X et al (2009) Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics 10(1):373PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Liu B, Li J, Tsykin A (2009) Discovery of functional miRNA-mRNA regulatory modules with computational methods. J Biomed Inform 42(4):685–691PubMedCrossRefGoogle Scholar
  22. 22.
    Joung J-G, Fei Z (2009) Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model. Bioinformatics 25(3):387–393PubMedCrossRefGoogle Scholar
  23. 23.
    Liu B et al (2009) Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinform 10(1):408CrossRefGoogle Scholar
  24. 24.
    Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500PubMedCrossRefGoogle Scholar
  25. 25.
    Rajewsky N (2006) MicroRNA target predictions in animals. Nat Genet 38:S8–S13PubMedCrossRefGoogle Scholar
  26. 26.
    Mazière P, Enright AJ (2007) Prediction of microRNA targets. Drug Discov Today 12(11–12):452–458PubMedCrossRefGoogle Scholar
  27. 27.
    John B et al (2004) Human MicroRNA targets. PLoS Biol 2(11):e363PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lall S et al (2006) A genome-wide Map of conserved MicroRNA targets in C. elegans. Curr Biol 16(5):460–471PubMedCrossRefGoogle Scholar
  29. 29.
    Miranda KC et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217PubMedCrossRefGoogle Scholar
  30. 30.
    Lewis BP et al (2003) Prediction of mammalian MicroRNA targets. Cell 115(7):787–798PubMedCrossRefGoogle Scholar
  31. 31.
    Ritchie W, Flamant S, Rasko JEJ (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Method 6(6):397–398CrossRefGoogle Scholar
  32. 32.
    Grimson A et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Baek D et al (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Alexiou P et al (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25(23):3049–3055PubMedCrossRefGoogle Scholar
  35. 35.
    Gaidatzis D et al (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinform 8(1):69CrossRefGoogle Scholar
  36. 36.
    Kertesz M et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284PubMedCrossRefGoogle Scholar
  37. 37.
    Selbach M et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63PubMedCrossRefGoogle Scholar
  38. 38.
    Huang J, Morris Q, Frey B (2006) Detecting microRNA targets by linking sequence, microRNA and gene expression data. Res Comput Mol Biol 3909:114–129CrossRefGoogle Scholar
  39. 39.
    Lavrac N et al (2004) Subgroup discovery with CN2-SD. J Mach Learn Res 5:153–188Google Scholar
  40. 40.
    Bonnet E et al (2010) Module network inference from a cancer gene expression data set identifies MicroRNA regulated modules. PLoS One 5(4):e10162PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Steyvers M et al(2004) Probabilistic author-topic models for information discovery. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, Seattle, WAGoogle Scholar
  42. 42.
    Blei DM, Jordan MI(2003) Modeling annotated data. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval, ACM, Toronto, CanadaGoogle Scholar
  43. 43.
    Liu B et al (2010) Identifying functional miRNA–mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics 26(24):3105–3111PubMedCrossRefGoogle Scholar
  44. 44.
    Liu JS (1994) The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. J Am Stat Assoc 89:958–966CrossRefGoogle Scholar
  45. 45.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Blenkiron C et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8(10):R214PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Desai KV et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99(10):6967–6972PubMedCrossRefGoogle Scholar
  48. 48.
    Herschkowitz J et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Sassen S, Miska EA, Caldas C (2008) MicroRNA – implications for cancer. Virchows Arch 452(1):1–10PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Adelaide J et al (2007) Integrated profiling of basal and luminal breast cancers. Cancer Res 67(24):11565–11575PubMedCrossRefGoogle Scholar
  51. 51.
    Bergamaschi A et al (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45(11):1033–1040PubMedCrossRefGoogle Scholar
  52. 52.
    Chin K et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541PubMedCrossRefGoogle Scholar
  53. 53.
    Neve RM et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 120(1):15–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUniversity of New South WalesRandwickAustralia
  2. 2.School of Computer and Information ScienceUniversity of South AustraliaAdelaideAustralia
  3. 3.Centre for Cancer BiologySA PathologyAdelaideAustralia
  4. 4.School of Molecular and Biomedical Science and Department of MedicineUniversity of AdelaideAdelaideAustralia
  5. 5.School of Biomedical Sciences and Pharmacy, Faculty of HealthUniversity of NewcastleNewcastleAustralia

Personalised recommendations