Web Resources for microRNA Research

  • Ulf Schmitz
  • Olaf Wolkenhauer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 774)


Over the last decade thousands of microRNAs (miRNAs) have been discovered in all kinds of taxa. The ever growing number of identified miRNA genes required ordered cataloging and annotation. This has led to the development of miRNA web resources.

MiRNA web resources can be referred to either as web accessible databases (repositories) or web applications that provide a defined computational task upon user request. Today, more than three dozen web accessible resources exist that gather, organize and annotate all kinds of miRNA related data. According to the type of data or data processing method, these miRNA web resources can be classified as miRNA sequence and annotation databases, resources and tools for predicted as well as experimentally validated targets, databases of miRNA regulation and expression, functional annotation and mapping databases and a number of other tools and resources that are species-specific or focus on particular phenotypes.

This chapter provides an overview of the different types of miRNA web resources and their purpose and gives some examples for each category. Furthermore, some valuable miRNA web applications will be introduced. Finally, strategies for miRNA data retrieval and associated risks and pitfalls will be discussed.


microRNA sequence database miRNA targets miRNA function miRNA expression Data retrieval Data integration Data mining 



The work of US and OW was supported by the German research foundation (DFG, Project: WO 991/4-1) and the German Federal Ministry of Education and Research (BMBF) as part of the project e:Bio-Metsys. We would like to thank Michael Hecker for fruitful discussions on this topic as well as Julio Vera and Xin Lai for continuous mutual encouragement and for proof reading the manuscript.


  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedGoogle Scholar
  2. 2.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedGoogle Scholar
  3. 3.
    Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669PubMedGoogle Scholar
  4. 4.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858PubMedGoogle Scholar
  5. 5.
    Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862PubMedGoogle Scholar
  6. 6.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864PubMedGoogle Scholar
  7. 7.
    Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111PubMedPubMedCentralGoogle Scholar
  8. 8.
    Jacobsen A, Krogh A, Kauppinen S, Lindow M (2010) miRMaid: a unified programming interface for microRNA data resources. BMC Bioinform 11:29Google Scholar
  9. 9.
    Gerlach D, Kriventseva EV, Rahman N, Vejnar CE, Zdobnov EM (2009) miROrtho: computational survey of microRNA genes. Nucleic Acids Res 37:D111–D117PubMedPubMedCentralGoogle Scholar
  10. 10.
    Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG (2007) miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35:D149–D155PubMedPubMedCentralGoogle Scholar
  11. 11.
    Taccioli C, Fabbri E, Visone R, Volinia S, Calin GA, Fong LY, Gambari R, Bottoni A, Acunzo M, Hagan J, Iorio MV, Piovan C, Romano G, Croce CM (2009) UCbase & miRfunc: a database of ultraconserved sequences and microRNA function. Nucleic Acids Res 37:D41–D48PubMedPubMedCentralGoogle Scholar
  12. 12.
    Levy A, Sela N, Ast G (2008) TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates. Nucleic Acids Res 36:D47–D52PubMedPubMedCentralGoogle Scholar
  13. 13.
    Grimson A, Farh KK-H, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hsu PWC, Huang H-D, Hsu S-D, Lin L-Z, Tsou A-P, Tseng C-P, Stadler PF, Washietl S, Hofacker IL (2006) miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 34:D135–D139PubMedPubMedCentralGoogle Scholar
  15. 15.
    Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The resource: targets and expression. Nucleic Acids Res 36:D149–D153PubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14:1012–1017PubMedGoogle Scholar
  17. 17.
    Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12:192–197PubMedGoogle Scholar
  19. 19.
    Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104PubMedPubMedCentralGoogle Scholar
  20. 20.
    Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG (2009) DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 25:1991–1993PubMedGoogle Scholar
  21. 21.
    Nam S, Li M, Choi K, Balch C, Kim S, Nephew KP (2009) MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 37:W356–W362PubMedPubMedCentralGoogle Scholar
  22. 22.
    Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217PubMedGoogle Scholar
  23. 23.
    Cho S, Jun Y, Lee S, Choi H-S, Jung S, Jang Y, Park C, Kim S, Lee S, Kim W (2011) miRGator v2.0: an integrated system for functional investigation of microRNAs. Nucleic Acids Res 39:D158–D162PubMedPubMedCentralGoogle Scholar
  24. 24.
    Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279PubMedGoogle Scholar
  25. 25.
    Tanzer A, Stadler PF (2004) Molecular evolution of a MicroRNA cluster. J Mol Biol 339:327–335PubMedGoogle Scholar
  26. 26.
    Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431PubMedPubMedCentralGoogle Scholar
  27. 27.
    Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GRS, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJP, Parker A, Proctor G, Vogel J, Searle SMJ (2010) Ensembl 2011. Nucleic Acids Res 39:D800–D806PubMedPubMedCentralGoogle Scholar
  28. 28.
    Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2011) GenBank. Nucleic Acids Res 40:D48–D53PubMedPubMedCentralGoogle Scholar
  29. 29.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedGoogle Scholar
  30. 30.
    Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63PubMedGoogle Scholar
  31. 31.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862PubMedGoogle Scholar
  32. 32.
    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36PubMedGoogle Scholar
  33. 33.
    Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila MicroRNA targets. PLoS Biol 1:E60PubMedPubMedCentralGoogle Scholar
  34. 34.
    Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1PubMedPubMedCentralGoogle Scholar
  35. 35.
    Rajewsky N, Socci ND (2004) Computational identification of microRNA targets. Dev Biol 267:529–535PubMedGoogle Scholar
  36. 36.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2:e363PubMedPubMedCentralGoogle Scholar
  37. 37.
    Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178PubMedGoogle Scholar
  38. 38.
    Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798PubMedGoogle Scholar
  39. 39.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedGoogle Scholar
  40. 40.
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517PubMedGoogle Scholar
  41. 41.
    Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA ­targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90PubMedPubMedCentralGoogle Scholar
  42. 42.
    Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37:W273–W276PubMedPubMedCentralGoogle Scholar
  43. 43.
    Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13:1894–1910PubMedGoogle Scholar
  44. 44.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284PubMedGoogle Scholar
  45. 45.
    Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500PubMedGoogle Scholar
  46. 46.
    Saetrom O, Snøve O, Saetrom P (2005) Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 11:995–1003PubMedGoogle Scholar
  47. 47.
    Kim S-K, Nam J-W, Rhee J-K, Lee W-J, Zhang B-T (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7:411PubMedPubMedCentralGoogle Scholar
  48. 48.
    Yan X, Chao T, Tu K, Zhang Y, Xie L, Gong Y, Yuan J, Qiang B, Peng X (2007) Improving the prediction of human microRNA target genes by using ensemble algorithm. FEBS Lett 581:1587–1593PubMedGoogle Scholar
  49. 49.
    Yang Y, Wang Y-P, Li K-B (2008) MiRTif: a support vector machine-based microRNA target interaction filter. BMC Bioinform 9(Suppl 12):S4Google Scholar
  50. 50.
    Sturm M, Hackenberg M, Langenberger D, Frishman D (2010) TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinform 11:292Google Scholar
  51. 51.
    Liu H, Yue D, Chen Y, Gao S-J, Huang Y (2010) Improving performance of mammalian microRNA target prediction. BMC Bioinform 11:476Google Scholar
  52. 52.
    Elefant N, Berger A, Shein H, Hofree M, Margalit H, Altuvia Y (2011) RepTar: a database of predicted cellular targets of host and viral miRNAs. Nucleic Acids Res 39:D188–D194PubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang X, Naqa IME (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24:325–332PubMedGoogle Scholar
  54. 54.
    Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2010) NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 39:D1005–D1010PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang X, Wang X (2006) Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 34:1646–1652PubMedPubMedCentralGoogle Scholar
  56. 56.
    Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847PubMedGoogle Scholar
  57. 57.
    Farh KK-H, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821PubMedGoogle Scholar
  58. 58.
    Huang JC, Morris QD, Frey BJ (2007) Bayesian inference of MicroRNA targets from sequence and expression data. J Comput Biol 14:550–563PubMedGoogle Scholar
  59. 59.
    Volinia S, Visone R, Galasso M, Rossi E, Croce CM (2009) Identification of microRNA activity by Targets’ Reverse EXpression. Bioinformatics 26:91–97PubMedGoogle Scholar
  60. 60.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp A-C, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141PubMedPubMedCentralGoogle Scholar
  61. 61.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486PubMedPubMedCentralGoogle Scholar
  62. 62.
    Yang J-H, Li J-H, Shao P, Zhou H, Chen Y-Q, Qu L-H (2011) StarBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209PubMedPubMedCentralGoogle Scholar
  63. 63.
    Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2011) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229PubMedPubMedCentralGoogle Scholar
  64. 64.
    Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, Tsai W-T, Chen G-Z, Lee C-J, Chiu C-M, Chien C-H, Wu M-C, Huang C-Y, Tsou A-P, Huang H-D (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169PubMedPubMedCentralGoogle Scholar
  65. 65.
    Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with “antagomirs”. Nature 438:685–689PubMedGoogle Scholar
  66. 66.
    Karginov FV, Conaco C, Xuan Z, Schmidt BH, Parker JS, Mandel G, Hannon GJ (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci 104:19291–19296PubMedGoogle Scholar
  67. 67.
    Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34:e107PubMedPubMedCentralGoogle Scholar
  68. 68.
    Jovanovic M, Reiter L, Picotti P, Lange V, Bogan E, Hurschler BA, Blenkiron C, Lehrbach NJ, Ding XC, Weiss M, Schrimpf SP, Miska EA, Grosshans H, Aebersold R, Hengartner MO (2010) A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nat Methods 7:837–842PubMedPubMedCentralGoogle Scholar
  69. 69.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114PubMedGoogle Scholar
  70. 70.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610PubMedGoogle Scholar
  71. 71.
    Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714PubMedPubMedCentralGoogle Scholar
  72. 72.
    Hammond SM (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16:4–9PubMedGoogle Scholar
  73. 73.
    Hammond SM (2007) MicroRNAs as tumor suppressors. Nat Genet 39:582–583PubMedGoogle Scholar
  74. 74.
    Kloosterman WP, Plasterk RHA (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450PubMedGoogle Scholar
  75. 75.
    Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179PubMedGoogle Scholar
  76. 76.
    Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69:7495–7498PubMedPubMedCentralGoogle Scholar
  77. 77.
    Farazi TA, Spitzer JI, Morozov P, Tuschl T (2011) miRNAs in human cancer. J Pathol 223:102–115PubMedPubMedCentralGoogle Scholar
  78. 78.
    Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205PubMedGoogle Scholar
  79. 79.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866PubMedGoogle Scholar
  80. 80.
    Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394PubMedGoogle Scholar
  81. 81.
    Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10:389–402PubMedPubMedCentralGoogle Scholar
  82. 82.
    Gallo A, Locatelli F (2012) ADARs: allies or enemies? The importance of A-to-I RNA editing in human disease: from cancer to HIV-1. Biol Rev Camb Philos Soc 87:95–110PubMedGoogle Scholar
  83. 83.
    Gu J, Iyer VR (2006) PI3K signaling and miRNA expression during the response of quiescent human fibroblasts to distinct proliferative stimuli. Genome Biol 7:R42PubMedPubMedCentralGoogle Scholar
  84. 84.
    Yu Z, Li Z, Jolicoeur N, Zhang L, Fortin Y, Wang E, Wu M, Shen S-H (2007) Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res 35:4535–4541PubMedPubMedCentralGoogle Scholar
  85. 85.
    Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251:499–505PubMedGoogle Scholar
  86. 86.
    Xu J, Wong C (2008) A computational screen for mouse signaling pathways targeted by microRNA clusters. RNA 14:1276–1283PubMedGoogle Scholar
  87. 87.
    Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol 11:R6PubMedPubMedCentralGoogle Scholar
  88. 88.
    Laganà A, Forte S, Giudice A, Arena MR, Puglisi PL, Giugno R, Pulvirenti A, Shasha D, Ferro A (2009) miRò: a miRNA knowledge base. Database (Oxford) 2009:bap008Google Scholar
  89. 89.
    Hoffmann R (2008) A wiki for the life sciences where authorship matters. Nat Genet 40:1047–1051PubMedGoogle Scholar
  90. 90.
    Barbarotto E, Schmittgen TD, Calin GA (2008) MicroRNAs and cancer: profile, profile, profile. Int J Cancer 122:969–977PubMedGoogle Scholar
  91. 91.
    Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261PubMedPubMedCentralGoogle Scholar
  92. 92.
    Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, Mani R, Rayner T, Sharma A, William E, Sarkans U, Brazma A (2007) ArrayExpress–a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35:D747–D750PubMedPubMedCentralGoogle Scholar
  93. 93.
    Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Chinnaiyan AM (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180PubMedPubMedCentralGoogle Scholar
  94. 94.
    Hausser J, Berninger P, Rodak C, Jantscher Y, Wirth S, Zavolan M (2009) MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res 37:W266–W272PubMedPubMedCentralGoogle Scholar
  95. 95.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller R-U, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, Vita GD, Frezzetti D, Trompeter H-I, Hornung V, Teng G, Hartmann G, Palkovits M, Lauro RD, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414PubMedPubMedCentralGoogle Scholar
  96. 96.
    Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8:69PubMedPubMedCentralGoogle Scholar
  97. 97.
    Yang Z, Ren F, Liu C, He S, Sun G, Gao Q, Yao L, Zhang Y, Miao R, Cao Y, Zhao Y, Zhong Y, Zhao H (2010) dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics 11(Suppl 4):S5PubMedPubMedCentralGoogle Scholar
  98. 98.
    Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22:3172–3183PubMedGoogle Scholar
  99. 99.
    Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3:e131PubMedPubMedCentralGoogle Scholar
  100. 100.
    Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedGoogle Scholar
  101. 101.
    Re A, Corá D, Taverna D, Caselle M (2009) Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human. Mol Biosyst 5:854–867PubMedPubMedCentralGoogle Scholar
  102. 102.
    Chien C-H, Sun Y-M, Chang W-C, Chiang-Hsieh P-Y, Lee T-Y, Tsai W-C, Horng J-T, Tsou A-P, Huang H-D (2011) Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 39:9345–9356PubMedPubMedCentralGoogle Scholar
  103. 103.
    Kawaji H, Severin J, Lizio M, Waterhouse A, Katayama S, Irvine KM, Hume DA, Forrest AR, Suzuki H, Carninci P, Hayashizaki Y, Daub CO (2009) The FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Genome Biol 10:R40PubMedPubMedCentralGoogle Scholar
  104. 104.
    Yamashita R, Wakaguri H, Sugano S, Suzuki Y, Nakai K (2009) DBTSS provides a tissue specific dynamic view of Transcription Start Sites. Nucleic Acids Res 38:D98–D104PubMedPubMedCentralGoogle Scholar
  105. 105.
    Wang J, Lu M, Qiu C, Cui Q (2010) TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 38:D119–D122PubMedPubMedCentralGoogle Scholar
  106. 106.
    Bandyopadhyay S, Bhattacharyya M (2010) PuTmiR: a database for extracting neighboring transcription factors of human microRNAs. BMC Bioinform 11:190Google Scholar
  107. 107.
    Lai X, Schmitz U, Gupta S, Bhattacharya A, Kunz M, Wolkenhauer O, Vera J (2012) Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Res 40:8818–8834Google Scholar
  108. 108.
    Friard O, Re A, Taverna D, Bortoli MD, Cora’ D (2010) CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinform 11:435Google Scholar
  109. 109.
    Bandyopadhyay S, Mitra R (2009) TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 25:2625–2631PubMedGoogle Scholar
  110. 110.
    Le Bechec A, Portales-Casamar E, Vettter G, Moes M, Zindy P-J, Saumet A, Arenillas D, Theillet C, Wasserman W, Lecellier C-H, Friederich E (2011) MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in meta-regulation network model. BMC Bioinform 12:67Google Scholar
  111. 111.
    Portales-Casamar E, Arenillas D, Lim J, Swanson MI, Jiang S, McCallum A, Kirov S, Wasserman WW (2009) The PAZAR database of gene regulatory information coupled to the ORCA toolkit for the study of regulatory sequences. Nucleic Acids Res 37:D54–D60PubMedPubMedCentralGoogle Scholar
  112. 112.
    Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, Wasserman WW, Sandelin A (2009) JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res 38:D105–D110PubMedPubMedCentralGoogle Scholar
  113. 113.
    Ho Sui SJ, Fulton DL, Arenillas DJ, Kwon AT, Wasserman WW (2007) oPOSSUM: integrated tools for analysis of regulatory motif over-representation. Nucleic Acids Res 35:W245–W252PubMedPubMedCentralGoogle Scholar
  114. 114.
    Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144PubMedPubMedCentralGoogle Scholar
  115. 115.
    Chaurasia G, Malhotra S, Russ J, Schnoegl S, Hanig C, Wanker EE, Futschik ME (2009) UniHI 4: new tools for query, analysis and visualization of the human protein-protein interactome. Nucleic Acids Res 37:D657–D660PubMedPubMedCentralGoogle Scholar
  116. 116.
    Hubbard TJP, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P (2009) Ensembl 2009. Nucleic Acids Res 37:D690–D697PubMedPubMedCentralGoogle Scholar
  117. 117.
    Le Béchec A, Zindy P, Sierocinski T, Petritis D, Bihouée A, Le Meur N, Léger J, Théret N (2008) M@IA: a modular open-source application for microarray workflow and integrative datamining. In Silico Biol 8:63–69Google Scholar
  118. 118.
    Friedman Y, Naamati G, Linial M (2010) MiRror: a combinatorial analysis web tool for ensembles of microRNAs and their targets. Bioinformatics 26:1920–1921PubMedGoogle Scholar
  119. 119.
    Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, Kobayashi SV, Lim L, Burchard J, Jackson AL, Linsley PS, Cleary MA (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28:2167–2174PubMedPubMedCentralGoogle Scholar
  120. 120.
    Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484PubMedPubMedCentralGoogle Scholar
  121. 121.
    Subramanian A (2005) From the cover: gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550PubMedGoogle Scholar
  122. 122.
    Perez-Iratxeta C, Bork P, Andrade-Navarro MA (2007) Update of the G2D tool for prioritization of gene candidates to inherited diseases. Nucleic Acids Res 35:W212–W216PubMedPubMedCentralGoogle Scholar
  123. 123.
    Bartonicek N, Enright AJ (2010) SylArray: a web server for automated detection of miRNA effects from expression data. Bioinformatics 26:2900–2901PubMedGoogle Scholar
  124. 124.
    van Dongen S, Abreu-Goodger C, Enright AJ (2008) Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 5:1023–1025PubMedPubMedCentralGoogle Scholar
  125. 125.
    Brigand KL, Robbe-Sermesant K, Mari B, Barbry P (2010) MiRonTop: mining microRNAs targets across large scale gene expression studies. Bioinformatics 26:3131–3132PubMedGoogle Scholar
  126. 126.
    Lu M, Shi B, Wang J, Cao Q, Cui Q (2010) TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs. BMC Bioinform 11:419Google Scholar
  127. 127.
    Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C (2010) MAGIA, a web-based tool for miRNA and Genes Integrated Analysis. Nucleic Acids Res 38:W352–W359PubMedPubMedCentralGoogle Scholar
  128. 128.
    Mituyama T, Yamada K, Hattori E, Okida H, Ono Y, Terai G, Yoshizawa A, Komori T, Asai K (2009) The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res 37:D89–D92PubMedPubMedCentralGoogle Scholar
  129. 129.
    Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M, Wolstencroft K, Aleksejevs S, Stevens R, Pettifer S, Lopez R, Goble CA (2010) BioCatalogue: a universal catalogue of web services for the life sciences. Nucleic Acids Res 38:W689–W694PubMedPubMedCentralGoogle Scholar
  130. 130.
    Gustafson AM, Allen E, Givan S, Smith D, Carrington JC, Kasschau KD (2005) ASRP: the Arabidopsis Small RNA Project Database. Nucleic Acids Res 33:D637–D640PubMedPubMedCentralGoogle Scholar
  131. 131.
    Angerstein C, Hecker M, Paap BK, Koczan D, Thamilarasan M, Thiesen H-J, Zettl UK (2012) Integration of MicroRNA databases to study MicroRNAs associated with multiple sclerosis. Mol Neurobiol 45:520–535PubMedGoogle Scholar
  132. 132.
    Yauk CL, Rowan-Carroll A, Stead JD, Williams A (2010) Cross-platform analysis of global microRNA expression technologies. BMC Genomics 11:330PubMedPubMedCentralGoogle Scholar
  133. 133.
    Ritchie W, Flamant S, Rasko JEJ (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6:397–398PubMedGoogle Scholar
  134. 134.
    Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3:881–886PubMedGoogle Scholar
  135. 135.
    Mendes ND, Freitas AT, Sagot M-F (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37:2419–2433PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Systems Biology and Bioinformatics, Institute of Computer ScienceUniversity of RostockRostockGermany
  2. 2.Stellenbosch Institute for Advanced Study (STIAS)Wallenberg Research Centre at Stellenbosch UniversityStellenboschSouth Africa

Personalised recommendations