Skip to main content

Dynamic Aggregation of Fine Particles in Gas-Fluidized Beds

  • Chapter
Book cover Fluidization of Fine Powders

Part of the book series: Particle Technology Series ((POTS,volume 18))

  • 1287 Accesses

Abstract

Individual fine particles suspended in a gas flow undergo a process of aggregation due to interparticle attraction. As the aggregate grows in size, the gas drag force on the surface of the aggregate increases to compensate the aggregate weight. Thus, the size of the aggregate becomes limited by the balance between the shear force exerted by the gas on the particles in the aggregate outer ring and interparticle attractive force. In this chapter, a fundamental equation is developed to predict the size of these dynamic aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gady, B., Schleef, D., Reifenberger, R., Rimai, D., DeMejo, L.P.: Identification of electrostatic and van der Waals interaction forces between a micrometer-size sphere and a flat substrate. Phys. Rev. B 53, 8065–8070 (1996)

    Article  ADS  Google Scholar 

  2. Hamaker, H.C.: The London-van der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937)

    Article  ADS  Google Scholar 

  3. Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005)

    Article  ADS  Google Scholar 

  4. Krupp, H.: Particle adhesion. Theory and experiment. Adv. Colloid Interface Sci. 1, 111–239 (1967)

    Article  Google Scholar 

  5. Massimilla, L., Donsi, G.: Cohesive forces between particles of fluid-bed catalysts. Powder Technol. 15(2), 253–260 (1976)

    Article  Google Scholar 

  6. Rietema, K.: The Dynamics of Fine Powders. Elsevier, London (1991)

    Book  Google Scholar 

  7. Schaeffer, D.M., Carpenter, M., Gady, B., Reifenberger, R., DeMejo, L.P., Rimai, D.S.: Surface roughness and its influence on particle adhesion using atomic force techniques. In: Rimai, D.S., DeMejo, L.P., Mittal, K.L. (eds.) Fundamentals of Adhesion and Interfaces, pp. 35–48. VSP, Utrecht, The Netherlands (1995)

    Google Scholar 

  8. Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005)

    Article  ADS  Google Scholar 

  9. Feng, J.Q.: Electrostatic interaction between two charged dielectric spheres in contact. Phys. Rev. E 62, 2891–2897 (2000)

    Article  ADS  Google Scholar 

  10. Bauccio, M. (ed.): ASM Engineered Materials Reference Book, 2nd edn. ASM International, Materials Park (1994)

    Google Scholar 

  11. Glor, M.: Hazards due to electrostatic charging of powders. J. Electrost. 16, 175–191 (1985)

    Article  Google Scholar 

  12. Hays, D.A.: Adhesion of charged particles. In: Rimai, D.S., DeMejo, L.P., Mittal, K.L. (eds.) Fundamentals of Adhesion and Interfaces, pp. 61–71. VSP, Utrecht, The Netherlands (1995)

    Google Scholar 

  13. Hendricks, C.D.: Electrostatic imaging. In: Moore, A.D. (ed.) Electrostatics and Its Applications, pp. 281–306. John Wiley & Sons, New York (1973)

    Google Scholar 

  14. Valverde, J.M., Quintanilla, M.A.S., Espin, M.J., Castellanos, A.: Nanofluidization electrostatics. Phys. Rev. E 77, 031301 (2008)

    Article  ADS  Google Scholar 

  15. Sutherland, D.N., Tan, C.T.: Sedimentation of a porous sphere. Chem. Eng. Sci. 25(12), 1948–1950 (1970). doi:10.1016/0009-2509(70)87013-0

    Article  Google Scholar 

  16. Zhu, C., Yu, Q., Dave, R.N., Pfeffer, R.: Gas fluidization characteristics of nanoparticle agglomerates. AIChE J. 51, 426–439 (2005)

    Article  Google Scholar 

  17. Nguyen, H.P., Chopard, B., Stoll, S.: Hydrodynamic properties of fractal aggregates in 2D using lattice Boltzmann simulation. Future Gener. Comput. Syst. 20, 981–991 (2004)

    Article  Google Scholar 

  18. Chopard, B., Nguyen, H., Stoll, S.: A lattice Boltzmann study of the hydrodynamic properties of 3D fractal aggregates. Math. Comput. Simul. 72, 103–107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Castellanos, A., Valverde, J.M., Quintanilla, M.A.S.: Aggregation and sedimentation in gas-fluidized beds of cohesive powders. Phys. Rev. E. 64, 041304 (2001)

    Article  ADS  Google Scholar 

  20. Witten, T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Article  ADS  Google Scholar 

  21. Kantor, Y., Witten, T.A.: Mechanical stability of tenuous objects. J. Phys. Lett. 45, 675–679 (1984)

    Article  Google Scholar 

  22. Manley, S., et al.: Limits to gelation in colloidal aggregation. Phys. Rev. Lett. 93, 108302 (2004)

    Article  ADS  Google Scholar 

  23. Kantor, Y., Webman, I.: Elastic properties of random percolating systems. Phys. Rev. Lett. 52, 1891–1894 (1984)

    Article  ADS  Google Scholar 

  24. Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: The transitional behavior of avalanches in cohesive granular materials. J. Stat. Mech. Theory Exp. 7, 07015 (2006)

    Article  Google Scholar 

  25. Valverde, J.M., Castellanos, A.: High viscosity gas fluidization of fine particles: An extended window of quasihomogeneous flow. Phys. Rev. E 74, 021302 (2006)

    Article  ADS  Google Scholar 

  26. Valverde, J.M., Quintanilla, M.A.S., Castellanos, A., Mills, P.: The settling of fine cohesive powders. Europhys. Lett. 54, 329–334 (2001)

    Article  ADS  Google Scholar 

  27. Pfeffer, C.N.R., Dave, R.N., Sundaresan, S.: Aerated vibrofluidization of silica nanoparticles. AIChE J. 50, 1776–1785 (2004)

    Article  Google Scholar 

  28. Valverde, J.M., Castellanos, A.: Random loose packing of cohesive granular materials. Europhys. Lett. 75(6), 985–991 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Valverde Millán, J.M. (2013). Dynamic Aggregation of Fine Particles in Gas-Fluidized Beds. In: Fluidization of Fine Powders. Particle Technology Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5587-1_7

Download citation

Publish with us

Policies and ethics