Skip to main content

The Added Value of Argumentation

  • Chapter
  • First Online:
Agreement Technologies

Abstract

We discuss the value of argumentation in reaching agreements, based on its capability for dealing with conflicts and uncertainty. Logic-based models of argumentation have recently emerged as a key topic within Artificial Intelligence. Key reasons for the success of these models is that they are akin to human models of reasoning and debate, and their generalisation to frameworks for modelling dialogues. They therefore have the potential for bridging between human and machine reasoning in the presence of uncertainty and conflict. We provide an overview of a number of examples that bear witness to this potential, and that illustrate the added value of argumentation. These examples amount to methods and techniques for argumentation to aid machine reasoning (e.g. in the form of machine learning and belief functions) on the one hand and methods and techniques for argumentation to aid human reasoning (e.g. for various forms of decision making and deliberation and for the Web) on the other. We also identify a number of open challenges if this potential is to be realised, and in particular the need for benchmark libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As witnessed by the recently inaugurated series of international conferences and workshops (www.comma-conf.org, www.mit.edu/~irahwan/argmas/argmas11, www.csd.abdn.ac.uk/~niroren/TAFA-11) and major European research projects (ARGUGRID: www.argugrid.eu, ASPIC: www.cossac.org/projects/aspic, IMPACT: www.policy-impact.eu)

  2. 2.

    Our reviews in these sections are by no means comprehensive; rather, selected examples are chosen to illustrate the salient points.

  3. 3.

    Different parts of this chapter have been written/edited by different authors, as follows:

    • this Sect. 21.1 has been written by Sanjay Modgil;

    • Section 21.2 has been edited by Francesca Toni, with Sect. 21.2.1 written by Ivan Bratko and Martin Možina and Sect. 21.2.2 written by Francesca Toni;

    • Section 21.3 has been edited by Sanjay Modgil, with Sect. 21.3.1.1 written by Sanjay Modgil, Sect. 21.3.1.2 written by Carlos Chesñevar, Sect. 21.3.1.3 written by Francesca Toni, QUI Sect. 21.3.2.1 written by Sanjay Modgil, Sect. 21.3.2.2 written by Thomas Gordon, Sect. 21.3.2.3 written by Francesca Toni, Sect. 21.3.2.4 written by Xiuyi Fan and Francesca Toni, Sect. 21.3.3 written by Floris Bex, Chris Reed and Sanjay Modgil, and Sect. 21.3.4 written by Joao Leite and Paolo Torroni;

    • Section 21.4 has been written by Wolfgang Dvořák, Sarah Alice Gaggl, Stefan Szeider and Stefan Woltran;

    • Section 21.5 has been written by Sanjay Modgil and Francesca Toni.

  4. 4.

    Due to space limitations, we will only roughly describe ABML (see Možina et al. 2007 for precise details).

  5. 5.

    www.argugrid.eu

  6. 6.

    www.cossac.org/projects/aspic

  7. 7.

    www.policy-impact.eu

  8. 8.

    www.argugrid.eu

  9. 9.

    www.policy-impact.eu

  10. 10.

    Rules, assumptions, and contraries are components of ABA.

  11. 11.

    ova.computing.dundee.ac.uk

  12. 12.

    Meanwhile, some more insults appeared, which increased the comments counter.

  13. 13.

    A 2010 survey illustrates Facebook overtaking Google’s popularity among US Internet users. See “Facebook becomes bigger hit than Google” by By Chris Nuttall and David Gelles on Financial Times, online March 17, 2010 www.ft.com/cms/s/2/67e89ae8-30f7-11df-b057-00144feabdc0.html#axzz1MSvZe0pb. Recently Facebook is investing on a “social web search” project in order to better exploit its social data. See “Facebook Delves Deeper Into Search” By Douglas MacMillan and Brad Stone on Bloomberg Business Week, online March 29, 2012 www.businessweek.com/articles/2012-03-28/facebook-delves-deeper-into-search.

  14. 14.

    http://lidia.cs.uns.edu.ar/delp_client/

  15. 15.

    http://www.doc.ic.ac.uk/~ft/CaSAPI/

  16. 16.

    http://carneades.berlios.de/

  17. 17.

    http://www.arg.dundee.ac.uk/toast/

  18. 18.

    http://www.ai.rug.nl/~verheij/comparg/

  19. 19.

    http://heen.webfactional.com/

  20. 20.

    http://rull.dbai.tuwien.ac.at:8080/ASPARTIX

  21. 21.

    Answer-Set Programming (ASP) (Niemelä, 1999) is a declarative programming paradigm which allows for succinct representation of combinatorial problems.

  22. 22.

    Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Stanford University, CA, USA, March 23–25, 2009

  23. 23.

    www.cs.huji.ac.il/project/UAI10/fileFormat.php

References

  1. Amgoud, L. 2000. Modeling dialogues using argumentation. In ICMAS ’00: Proceedings of the fourth international conference on multiAgent systems, 31. Washington: IEEE Computer Society.

    Google Scholar 

  2. Amgoud, L., and C. Cayrol. 2002. A reasoning model based on the production of acceptable arguments. Annals of Mathematics and Artificial Intelligence 34(1–3): 197–215.

    Article  MathSciNet  MATH  Google Scholar 

  3. Amgoud, L., C. Cayrol, M. Lagasquie-Schiex, and P. Livet. 2008. On bipolarity in argumentation frameworks. International Journal of Intelligent Systems 23(10): 1062–1093.

    Article  MATH  Google Scholar 

  4. Atkinson, K. 2009. What should we do?:computational representation of persuasive argument in practical reasoning. Ph.D. thesis, Department of Computer Science, University of Liverpool.

    Google Scholar 

  5. Baroni, P., and M. Giacomin. 2009. Semantics of abstract argument systems. In Argumentation in artificial intelligence, ed. I. Rahwan and G. Simari, 25–44. New York: Springer.

    Chapter  Google Scholar 

  6. Baroni, P., F. Cerutti, M. Giacomin, and G. Guida. 2011. AFRA: Argumentation framework with recursive attacks. International Journal of Approximate Reasoning 52(1): 19–37.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bench-Capon, T.J.M. 2002. Value-based argumentation frameworks. In Proceedings of the 10th international workshop on non-monotonic reasoning (NMR’02), Whistler, 443–454.

    Google Scholar 

  8. Bench-Capon, T.J.M. 2003. Persuasion in practical argument using value-based argumentation frameworks. Journal of Logic and Computation 13(3): 429–448.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bench-Capon, T.J.M., and P.E. Dunne. 2007. Argumentation in artificial intelligence. Artificial Intelligence 171: 10–15.

    Google Scholar 

  10. Berg, T., T. van Gelder, F. Patterson, and S. Teppema. 2009. Critical thinking: Reasoning and communicating with rationale. Amsterdam: Pearson Education Benelux.

    Google Scholar 

  11. Berre, D.L., and L. Simon. 2006. Preface. Journal on Satisfiability, Boolean Modeling and Computation 2(1–4): 103–143.

    Google Scholar 

  12. Besnard, P., and A. Hunter. 2000. A logic-based theory of deductive arguments. Artificial Intelligence 128(1–2): 203–235.

    MathSciNet  Google Scholar 

  13. Besnard, P., and S. Doutre. 2004. Checking the acceptability of a set of arguments. In Proceedings of the 10th international workshop on non-monotonic reasoning (NMR’02), Whistler, 59–64.

    Google Scholar 

  14. Bex, F., S. Modgil, H. Prakken, and C. Reed. 2012. On logical reifications of the argument interchange format. Journal of Logic and Computation. doi: 10.1093/logcom/exs033.

    Google Scholar 

  15. Bistarelli, S., and F. Santini. 2010. A common computational framework for semiring-based argumentation systems. In Proceedings of the 19th European conference on artificial intelligence (ECAI’10), Frontiers in artificial intelligence and applications, vol. 215, ed. H. Coelho, R. Studer, and M. Wooldridge, 131–136. Amsterdam: IOS.

    Google Scholar 

  16. Bochman, A. 2003. Collective argumentation and disjunctive programming. Journal of Logic and Computation 13(3): 405–428.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bondarenko, A., P. Dung, R. Kowalski, and F. Toni. 1997. An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence 93(1–2): 63–101.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bratko, I., J. Žabkar, and M. MoŽabkarina. 2009. Argument based machine learning. In Argumentation in artificial intelligence, ed. I. Rahwan and G. Simari, 463–482. New York: Springer.

    Chapter  Google Scholar 

  19. Caminada, M., and L. Amgoud. 2007. On the evaluation of argumentation formalisms. Artificial Intelligence 171(5–6): 286–310.

    Article  MathSciNet  MATH  Google Scholar 

  20. Cayrol, C., and M.C. Lagasquie-Schiex. 2005. Graduality in argumentation. Journal of Artificial Intelligence Research 23: 245–297.

    MathSciNet  MATH  Google Scholar 

  21. Chesñevar, C., J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South, G. Vreeswijk, and S. Willmott. 2006. Towards an argument interchange format. The Knowledge Engineering Review 21: 293–316.

    Article  Google Scholar 

  22. Chesñevar, C., A. Maguitman, and M.P. González. 2009. Empowering recommendation technologies through argumentation. In Argumentation in artificial intelligence, ed. I. Rahwan and G. Simari, 403–422. New York: Springer.

    Chapter  Google Scholar 

  23. Clark, P., and R. Boswell. 1991. Rule induction with CN2: Some recent improvements. In Machine learning – Proceeding of the fifth Europen conference (EWSL-91), Berlin, 151–163.

    Google Scholar 

  24. Denecker, M., J. Vennekens, S. Bond, M. Gebser, and M. Truszczynski. 2009. The second answer set programming competition. In Proceedings of the 10th international conference on logic programming and nonmonotonic reasoning (LPNMR 2009), LNCS, vol. 5753, ed. E. Erdem, F. Lin, and T. Schaub, 637–654. Berlin: Springer.

    Google Scholar 

  25. Dung, P.M. 1993. An argumentation semantics for logic programming with explicit negation. In Proceedings of the tenth logic programming conference, 616–630. Cambridge: MIT.

    Google Scholar 

  26. Dung, P., R. Kowalski, and F. Toni. 2006. Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence 170: 114–159.

    Article  MathSciNet  MATH  Google Scholar 

  27. Dung, P., P. Mancarella, and F. Toni. 2007. Computing ideal sceptical argumentation. Artificial Intelligence 171(10–15): 642–674. Special issue on argumentation in artificial intelligence.

    Google Scholar 

  28. Dung, P., R. Kowalski, and F. Toni. 2009. Assumption-based argumentation. In Argumentation in Artificial Intelligence, ed. I. Rahwan and G. Simari, 199–218. Berlin: Springer.

    Chapter  Google Scholar 

  29. Dung, P.M., P.M., Thang, and F. Toni. 2008. Towards argumentation-based contract negotiation. In Proceedings of the 1st international conference on computational models of argument (COMMA’08). Amsterdam: IOS.

    Google Scholar 

  30. Dung, P.M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2): 321–358.

    Article  MathSciNet  MATH  Google Scholar 

  31. Dung, P.M., P.M. Thang, and N.D. Hung. 2009. Argument-based decision making and negotiation in e-business: Contracting a land lease for a computer assembly plant. In Proceedings of the 9th international workshop on computational logic in multi-agent systems (CLIMA IX), Lecture notes in computer science, vol. 5405, ed. M. Fisher, F. Sadri, and M. Thielscher, 154–172. Berlin: Springer.

    Google Scholar 

  32. Dunne, P.E., T. Hunter, P. McBurney, S. Parsons, and M. Wooldridge. 2011. Weighted argument systems: Basic definitions, algorithms, and complexity results. Artificial Intelligence 175: 457–486.

    Article  MathSciNet  MATH  Google Scholar 

  33. Dvořák, W., S. Ordyniak, and S. Szeider. 2012a. Augmenting tractable fragments of abstract argumentation. Artificial Intelligence 186: 157–173.

    Article  MathSciNet  MATH  Google Scholar 

  34. Dvořák, W., Pichler, and S. Woltran. 2012b. Towards fixed-parameter tractable algorithms for abstract argumentation. Artificial Intelligence 186: 1–37.

    Google Scholar 

  35. Egly, U., and S. Woltran. 2006. Reasoning in argumentation frameworks using quantified boolean formulas. In Proceedings of the 1st international conference on computational models of argument (COMMA’06), Frontiers in Artificial Intelligence and Applications, vol. 144, ed. P.E. Dunne and T.J.M. Bench-Capon, 133–144. Amsterdam: IOS.

    Google Scholar 

  36. Egly, U., S.A. Gaggl, and S. Woltran. 2010. Answer-set programming encodings for argumentation frameworks. Argument and Computation 1(2): 147–177.

    Article  Google Scholar 

  37. Ennals, R., B. Trushkowsky, J.M. Agosta. 2010. Highlighting disputed claims on the web. In Proceedings of the 19th WWW, 341–350. New York: ACM.

    Google Scholar 

  38. Falappa, M., A. García, G. Kern-Isberner, and G. Simari. 2011. On the evolving relation between belief revision and argumentation. Knowledge Engineering Review 26(1): 35–43.

    Article  Google Scholar 

  39. Falappa, M., G. Kern-Isberner, and G.R. Simari. 2009. Argumentation in artificial intelligence, chap. Belief revision and argumentation Theory, ed. I. Rahwan, G.R. Simari, 341–360. New York: Springer.

    Google Scholar 

  40. Fan, X., and F. Toni. 2011. Assumption-based argumentation dialogues. In Proceedings of the IJCAI 2011, Pasadena.

    Google Scholar 

  41. Fan, X., and F. Toni. 2012a. Agent strategies for aba-based information-seeking and inquiry dialogues. In Proceedings of the ECAI 2012), Montpellier.

    Google Scholar 

  42. Fan, X., and F. Toni. 2012b. Argumentation dialogues for two-agent conflict resolution. In Proceedings of the 4th international conference on computational models of argument (COMMA12), Amsterdam: IOS.

    Google Scholar 

  43. Fan, X., and F. Toni. 2012c. Mechanism design for argumentation-based persuasion dialogues. In Proceedings of the 4th international conference on computational models of argument (COMMA12), Amsterdam: IOS.

    Google Scholar 

  44. Feigenbaum, E.A. 2003. Some challenges and grand challenges for computational intelligence. Source Journal of the ACM 50(1): 32–40.

    MathSciNet  Google Scholar 

  45. Ferretti, E., M. Errecalde, A. García, and G.R. Simari. 2008. Decision rules and arguments in defeasible decision making. In Proceedings of the 2nd international conference on computational models of arguments (COMMA), Frontiers in artificial intelligence and applications, vol. 172, ed. P. Besnard et al., 171–182. Amsterdam: IOS.

    Google Scholar 

  46. Fox, J., D. Glasspool, D. Grecu, S. Modgil, M. South, V. Patkar. 2007. Argumentation-based inference and decision making–a medical perspective. IEEE Intelligent Systems 22(6): 34–41. doi:10.1109/MIS.2007.102. http://dx.doi.org/10.1109/MIS.2007.102.

    Google Scholar 

  47. García, A., and G. Simari. 2004. Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming 4(1): 95–138.

    Article  MathSciNet  MATH  Google Scholar 

  48. García, A., N. Rotstein, M. Tucat, and G.R. Simari. 2007. An argumentative reasoning service for deliberative agents. In KSEM 2007, LNAI, vol. 4798, 128–139. Berlin: Springer.

    Google Scholar 

  49. García, A.J., Rotstein, N., Chesñevar, C., Simari, G.R.: Explaining why something is warranted in defeasible logic programming. In ExaCt, Copenhagen, ed. T.R.B. et al., 25–36.

    Google Scholar 

  50. García, D., S. Gottifredi, P. Krümpelmann, M. Thimm, G. Kern-Isberner, M. Falappa, and A. García. 2011. On influence and contractions in defeasible logic programming. In LPNMR, Lecture notes in computer science, vol. 6645, ed. J.P. Delgrande and W. Faber, 199–204. Berlin: Springer.

    Google Scholar 

  51. Girle, R., D. Hitchcock, P. McBurney, and B. Verheij. 2003. Argumentation machines. New frontiers in argument and computation, chap. Decision support for practical reasoning: A theoretical and computational perspective, 55–84. Dordrecht: Kluwer Academic.

    Google Scholar 

  52. Glasspool, D., A. Oettinger, J. Smith-Spark, F. Castillo, V. Monaghan, and J. Fox. 2007. Supporting medical planning by mitigating cognitive load. Methods of Information in Medicine 46: 636–640.

    Google Scholar 

  53. Godbole, N., M. Srinivasaiah, and S. Skiena. 2007. Large-scale sentiment analysis for news and blogs. In Proceedings of the international Conference on weblogs and social media (ICWSM), Salt Lake City.

    Google Scholar 

  54. González, M., J. Lorés, and T. Granollers. 2008. Enhancing usability testing through datamining techniques: A novel approach to detecting usability problem patterns for a context of use. Information and Software Technology 50(6): 547–568.

    Article  Google Scholar 

  55. González, M., C. Chesñevar, N. Pinwart, M. Gomez Lucero. Developing argument assistant systems from usability viewpoint. In Proceedings of the international conference on knowledge management and information sharing, Valencia, 157–163. INSTICC.

    Google Scholar 

  56. González, M.P., S. Gottifredi, A.J. García, and G.R. Simari. 2011. Towards argument representational tools for hybrid argumentation systems. In HCI (12), Lecture notes in computer science, vol. 6772, ed. G. Salvendy and M.J. Smith, 236–245. Berlin: Springer.

    Google Scholar 

  57. Gordon, T.F. 1995. The pleadings game. An artificial intelligence model of procedural justice. Dordrecht/Boston/London: Kluwer Academic.

    Google Scholar 

  58. Gordon, T.F., and D. Walton. 2006. The Carneades argumentation framework – using presumptions and exceptions to model critical questions. In Proceedings of the 1st international conference on computational models of argument (COMMA’06), Frontiers in artificial intelligence and applications, vol. 144, ed. P.E. Dunne and T.J.M. Bench-Capon, 195–207. Amsterdam: IOS.

    Google Scholar 

  59. Governatori, G., and M.J. Maher. 2000. An argumentation-theoretic characterization of defeasible logic. In Proceedings of the fourteenth European conference on artificial intelligence, Berlin, 469–473.

    Google Scholar 

  60. Groznik, V., M. Guid, A. Sadikov, M. Možina, D. Georgijev, V. Kragelj, S. Ribarič, Z. Pirtošek, and I. Bratko. 2011. Elicitation of neurological knowledge with ABML. In Proceedings of the 13th conference on artificial intelligence in medicine (AIME’11), Bled, July 2–6, 2011.

    Google Scholar 

  61. Hamblin, C.L. 1971. Mathematical models of dialogue. Theoria 37: 130–155.

    Article  MathSciNet  MATH  Google Scholar 

  62. Heras, S., K. Atkinson, V.J. Botti, F. Grasso, V. Julian, and P. McBurney. 2010. How argumentation can enhance dialogues in social networks. In Proceedings of the 3rd international conference on computational models of argument (COMMA’10), Desenzano del Garda, September 8–10, 2010, Frontiers in Artificial Intelligence and Applications, vol. 216, ed. P. Baroni, F. Cerutti, M. Giacomin, and G.R. Simari, 267–274. Amsterdam: IOS.

    Google Scholar 

  63. Hoos, H.H., and T. Stützle. 2000. SATLIB: An online resource for research on SAT. In Proceedings of the SAT 2000, 283–292. Amsterdam: IOS.

    Google Scholar 

  64. Hussain, A., and F. Toni. 2008. On the benefits of argumentation for negotiation – preliminary version. In Proceedings of 6th European workshop on multi-agent systems (EUMAS-2008), Bath.

    Google Scholar 

  65. Jennings, N.R., P. Faratin, A.R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge. 2001. Automated negotiation: Prospects, methods and challenges. Group Decision and Negotiation 10(2): 199–215.

    Article  Google Scholar 

  66. Kirschner, P.A., S.J. Buckingham Shum, and C.S. Carr (eds.). 2003. Visualizing argumentation: Software tools for collaborative and educational sense-making. Springer, London. http://oro.open.ac.uk/12107/.

  67. Langley, P., and H.A. Simon. 1995. Applications of machine learning and rule induction. Communications of the ACM 38(11): 54–64. doi:http://doi.acm.org/10.1145/219717.219768.

  68. Leite, J., and J. Martins. 2011. Social abstract argumentation. In IJCAI 2011, Proceedings of the 22nd international joint conference on artificial intelligence, Barcelona, Catalonia, July 16–22, 2011, pp. 2287–2292. IJCAI/AAAI.

    Google Scholar 

  69. Lucero, M.G., C. Chesñevar, and Simari, G.R. 2009. On the accrual of arguments in defeasible logic programming. In IJCAI, Pasadena, ed. C. Boutilier, 804–809.

    Google Scholar 

  70. Mackenzie, J. 1990. Four dialogue systems. Studia Logica 49(4): 567–583.

    Article  MathSciNet  MATH  Google Scholar 

  71. Matt, P.A., and Toni, F. 2008. A game-theoretic measure of argument strength for abstract argumentation. In 11th European conference on logics in artificial intelligence, Dresden.

    Google Scholar 

  72. Matt, P.A., F. Toni, T. Stournaras, D. Dimitrelos. 2008. Argumentation-based agents for eprocurement. In Proceedings of the 7th international conference on autonomous agents and multiagent systems (AAMAS 2008) – Industry and applications track, Estoril, ed. M. Berger, B. Burg, and S. Nishiyama, 71–74.

    Google Scholar 

  73. Matt, P.A., F. Toni, and J. Vaccari. 2009. Dominant decisions by argumentation agents, argumentation in multi-agent systems. In ArgMAS 2009, Budapest, ed. P. McBurney, S. Parson, I. Rawan, and N. Maudet.

    Google Scholar 

  74. Matt, P.A., M. Morge, and F. Toni. 2010. Combining statistics and arguments to compute trust. In Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS 2010), Toronto, ed. W. van der Hoek and G.A. Kaminka.

    Google Scholar 

  75. McGinnis, J., K. Stathis, and F. Toni. 2011. A formal model of agent-oriented virtual organisations and their formation. Multiagent and Grid Systems 7(6): 291–310.

    Google Scholar 

  76. Mercier, H., and Sperber, D. 2011. Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences 34(2): 57–74.

    Article  Google Scholar 

  77. Mitchell, T. 1997. Machine learning. McGraw-Hill Education (ISE Editions). http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0071154671.

  78. Modgil, S. 2009. Reasoning about preferences in argumentation frameworks. Artificial Intelligence 173(9–10): 901–934.

    Article  MathSciNet  MATH  Google Scholar 

  79. Modgil, S., and T. Bench-Capon. 2011. Metalevel argumentation. Journal of Logic and Computation 21: 959–1003.

    Article  MathSciNet  MATH  Google Scholar 

  80. Modgil, S., and M. Caminada. 2009. Proof theories and algorithms for abstract argumentation frameworks. In Argumentation in Artificial Intelligence, ed. I. Rahwan and G. Simari, 105–129. Springer.

    Google Scholar 

  81. Modgil, S., and H. Prakken. 2012. A general account of argumentation and preferences. Artificial Intelligence. http://dx.doi.org/10.1016/j.artint.2012.10.008, 2012.

  82. Moguillansky, M., N. Rotstein, M. Falappa, A. García, and G.R. Simari. 2008. Argument theory change: Revision upon warrant. In Proceedings of the twenty-third conference on artificial intelligence, AAAI 2008, Chicago, 132–137.

    Google Scholar 

  83. Moguillansky, M., N. Rotstein, M. Falappa, A. García, and G.R. Simari. 2010. Argument theory change through defeater activation. In Proceedings of the 3rd international conference on computational models of argument (COMMA’10), Frontiers in artificial intelligence and applications, vol. 216, ed. P. Baroni, F. Cerutti, M. Giacomin, and G.R. Simari, 359–366. Amsterdam: IOS.

    Google Scholar 

  84. Možina, M. 2009. Argument based machine learning. Ph.D. thesis, University of Ljubljana: Faculty of Computer and Information Science, Ljubljana.

    Google Scholar 

  85. Možina, M., M. Guid, J. Krivec, A. Sadikov, and I. Bratko. 2008. Fighting knowledge acquisition bottleneck with argument based machine learning. In The 18th European conference on artificial intelligence (ECAI), Patras, 234–238.

    Google Scholar 

  86. Možina, M., M. Guid, J. Krivec, A. Sadikov, and I. Bratko. 2010. Learning to explain with ABML. In Proceedings of the 5th international workshop on explanation-aware computing (ExaCt’2010), Lisbon, pp. 37–49, ISNN 1613–0073. CEUR-WS.org.

    Google Scholar 

  87. Možina, M., J. Žabkar, and I. Bratko. 2007. Argument based machine learning. Artificial Intelligence 171(10/15): 922–937.

    MathSciNet  MATH  Google Scholar 

  88. Niemelä, I. 1999. Logic programming with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3–4): 241–273.

    Article  MathSciNet  MATH  Google Scholar 

  89. Pang, B., and L. Lee. 2008. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1–2): 1–135.

    Article  Google Scholar 

  90. Podlaszewski, M., M. Caminada, and G. Pigozzi. 2011. An implementation of basic argumentation components (demonstration). In Proceedings AAMAS 2011, Taipei, 1307–1308.

    Google Scholar 

  91. Prakken, H. 2001. Modelling reasoning about evidence in legal procedure. In Proceedings of the eighth international conference on artificial intelligence and law (ICAIL-01), 119–128. New York: ACM Press.

    Google Scholar 

  92. Prakken, H. 2005. Coherence and flexibility in dialogue games for argumentation. Journal of Logic and Computation 15(6): 1009–1040.

    Article  MathSciNet  MATH  Google Scholar 

  93. Prakken, H. 2010. An abstract framework for argumentation with structured arguments. Argument and Computation 1(2): 93–124.

    Article  Google Scholar 

  94. Rahwan, I., S.D. Ramchurn, N.R. Jennings, P. McBurney, S. Parsons, and L. Sonenberg. 2004. Argumentation-based negotiation. The Knowledge Engineering Review 18(4): 343–375.

    Article  Google Scholar 

  95. Rahwan, I., and C. Reed. 2009. The argument interchange format. In Argumentation in artificial intelligence, ed. I. Rahwan and G. Simari, 383–402. New York: Springer.

    Chapter  Google Scholar 

  96. Rahwan, I., F. Zablith, and C. Reed. 2007. Laying the foundations for a world wide argument web. Artificial Intelligence 171: 897–921.

    Article  Google Scholar 

  97. Reed, C., and G. Rowe. 2004. Araucaria: Software for argument analysis. Diagramming and representation. International Journal of AI Tools 13(4): 961–980.

    Google Scholar 

  98. Reed, C., S. Wells, K. Budzynska, J. Devereux. 2010. Building arguments with argumentation: The role of illocutionary force in computational models of argument. In Proceedings of the 3rd international conference on computational models of argument (COMMA’10), Desenzano del Garda. Amsterdam: IOS.

    Google Scholar 

  99. Rotstein, N., M. Moguillansky, M. Falappa, A. García, and G.R. Simari. 2008. Argument theory change: Revision upon Warrant. In Proceedings of the international conference on computational models of argument (COMMA’08), Toulouse, 336–347. Amsterdam: IOS.

    Google Scholar 

  100. Sadikov, A., M. Možina, M. Guid, J. Krivec, and I. Bratko. 2006. Automated chess tutor. In Proceedings of the 5th international conference on computers and games, Turin.

    Google Scholar 

  101. Schneider, J., A. Passant, T. Groza, and J.G. Breslin. 2010. Argumentation 3.0: How semantic web technologies can improve argumentation modeling in web 2.0 environments. In Proceedings of the international conference on computational models of argument (COMMA’10), Desenzano del Garda, September 8–10, 2010, Frontiers in artificial intelligence and applications, vol. 216, ed. P. Baroni, F. Cerutti, M. Giacomin, and G.R. Simari, 439–446. Amsterdam: IOS.

    Google Scholar 

  102. Shafer, G. 1985. Probability judgment in artificial intelligence. In Proceedings of the first annual conference on uncertainty in artificial intelligence (UAI’85), Los Angeles, ed. L.N. Kanal and J.F. Lemmer, 127–136. Elsevier.

    Google Scholar 

  103. Snaith, M., J. Lawrence, and C. Reed. 2010. Mixed initiative argument in public deliberation. In ed. F. De Cindio et al., From e-Participation to online deliberation, proceedings of OD2010, Leeds.

    Google Scholar 

  104. Tolchinsky, P., U. Cortés, S. Modgil, F. Caballero, and A. Lopez-Navidad. 2006a. Increasing the availability of human organs for transplantation through argumentation based deliberation among agents. IEEE Special Issue on Intelligent Agents in Healthcare 21(6): 30–37.

    Google Scholar 

  105. Tolchinsky, P., S. Modgil, U. Cortés, M. Sánchez-Marré. 2006b. Cbr and argument schemes for collaborative decision making. In Proceedings of the 1st international conference on computational models of argument, pp. 71–82. Liverpool: IOS.

    Google Scholar 

  106. Tolchinsky, P., S. Modgil, K. Atkinson, P. McBurney, U. Cortes. 2012. Deliberation dialogues for reasoning about safety critical actions. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 25: 209–259.

    Article  Google Scholar 

  107. Toni, F. 2008. Argumentative KGP agents for service composition. In Proceedings of the AITA08, architectures for intelligent theory-based Agents, AAAI spring symposium, Stanford University, ed. M. Balduccini and C. Baral.

    Google Scholar 

  108. Toni, F. 2010. Argumentative agents. In Proceedings of the international multiconference on computer science and information technology, 223–229. Piscataway: IEEE.

    Google Scholar 

  109. Toni, F., and M. Sergot. 2011. Argumentation and ASP. In LP, KR, and NMR: Essays in honor of michael gelfond. Berlin: Springer.

    Google Scholar 

  110. Toni, F., and P. Torroni. 2012. Bottom-up argumentation. In First international workshop on theory and application, TAFA 2011, Barcelona, July 16–17, 2011, Revised selected papers, Lecture notes in computer science, vol. 7132, ed. S. Modgil, N. Oren, and F. Toni, 249–262. Berlin: Springer.

    Google Scholar 

  111. Toni, F., M. Grammatikou, S. Kafetzoglou, L. Lymberopoulos, S. Papavassileiou, D. Gaertner, M. Morge, S. Bromuri, J. McGinnis, K. Stathis, V. Curcin, M. Ghanem, and L. Guo. 2008. The ArguGRID platform: An overview. In Proceedings of grid economics and business models, 5th international workshop (GECON 2008), Lecture notes in computer science, vol. 5206, ed. J. Altmann, D. Neumann, and T. Fahringer, 217–225. Berlin: Springer.

    Google Scholar 

  112. Torroni, P., M. Gavanelli, and F. Chesani. 2009. Arguing on the semantic grid. In Argumentation in Artificial Intelligence, ed. I. Rahwan and G. Simari, 423–441. Springer. doi:10.1007/978-0-387-98197-0\_21.

  113. Torroni, P., M. Prandini, M. Ramilli, J. Leite, and J. Martins. 2010. Arguments against the troll. In Proceedings of the eleventh AI*IA symposium on artificial Intelligence, Brescia, Arti Grafiche Apollonio, 232–235.

    Google Scholar 

  114. Toulmin, S. 1958. The Uses of Argument. Cambridge: Cambridge University Press.

    Google Scholar 

  115. van Veenen, J., and H. Prakken. 2006. A protocol for arguing about rejections in negotiation. In Proceedings of the 2nd international workshop on argumentation in multi-agent systems (ArgMAS 2005), affiliated to AAMAS 2005, Lecture notes in computer science, vol. 4049, ed. S. Parsons, N. Maudet, P. Moraitis, and I. Rahwan, 138–153. Berlin: Springer.

    Google Scholar 

  116. Verheij, B. 2003. Artificial argument assistants for defeasible argumentation. Artificial intelligence 150(1–2): 291–324.

    Article  Google Scholar 

  117. Verheij, B. 2007. A labeling approach to the computation of credulous acceptance in argumentation. In Proceedings of the 20th international joint conference on artificial intelligence (IJCAI 2007), Hyderabad, ed. M.M. Veloso, 623–628.

    Google Scholar 

  118. Walton, D.N. 1996. Argument schemes for presumptive reasoning. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  119. Walton, D.N., and E.C.W. Krabbe. 1995. Commitment in dialogue: Basic concepts of interpersonal reasoning. SUNY series in logic and language. Albany: State University of New York.

    Google Scholar 

  120. Walton, D.N., C. Reed, and F. Macagno. 2008.Argumentation schemes. Cambridge: Cambridge University.

    Google Scholar 

  121. Webb, G.I., J. Wells, and Z. Zheng. 1999. An experimental evaluation of integrating machine learning with knowledge acquisition. Machine Learning 35(1): 5–23. doi:http://dx.doi.org/10.1023/A:1007504102006.

  122. Wells, S., C. Gourlay, and C. Reed. 2009. Argument blogging. In 9th international workshop on computational models of natural argument, Pasadena.

    Google Scholar 

  123. Wooldridge, M. 2003. Properties and complexity of some formal inter-agent dialogues. Journal of Logic and Computation 13: 347–376.

    Article  MathSciNet  MATH  Google Scholar 

  124. Yu, B., and M.P. Singh. 2002. Distributed reputation management for electronic commerce. Computational Intelligence 18(4): 535–549.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Many thanks to Jordi Sabater-Mir and Vicente Botti for useful suggestions and comments on an earlier version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Modgil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Modgil, S. et al. (2013). The Added Value of Argumentation. In: Ossowski, S. (eds) Agreement Technologies. Law, Governance and Technology Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5583-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5583-3_21

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5582-6

  • Online ISBN: 978-94-007-5583-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics