Skip to main content

Ultrafast Powder Diffraction

  • Conference paper
  • First Online:
Uniting Electron Crystallography and Powder Diffraction

Abstract

An overview is given of the use of powder synchrotron-X-ray and neutron diffraction to study very fast physical or chemical processes that require time resolution of 500 ms or less. The experimental requirements to obtain data of good quality are considered, including the incident flux, detector characteristics, and the different strategies possible for irreversible and reversible processes. The latter are accessible via a stroboscopic approach whereas the former require the maximum rates of data acquisition. Some recent studies are described, drawn from the areas of combustion synthesis, metallurgy and catalysis. The exploitation of the bunch structure of a synchrotron ring to obtain time resolution in the sub-ns range with the pump-probe stroboscopic approach is also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Labiche JC et al (2007) The fast readout low noise camera as a versatile X-ray detector for time resolved dispersive EXAFS and diffraction studies of dynamic problems in materials science, chemistry and catalysis. Rev Sci Instrum 78:091301

    Article  ADS  Google Scholar 

  2. Daniels JE, Drakopoulos M (2009) High-energy X-ray diffraction using the Pixium 4700 flat-panel detector. J Synchrotron Radiat 16:463–468

    Article  Google Scholar 

  3. Chupas PJ, Chapman KW, Lee PL (2007) Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements. J Appl Crystallogr 40:463–470

    Article  Google Scholar 

  4. Lee JH et al (2008) Synchrotron applications of an amorphous silicon flat-panel detector. J Synchrotron Radiat 15:477–488

    Article  Google Scholar 

  5. Bergamaschi A et al (2010) The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source. J Synchrotron Radiat 17:653–668

    Article  Google Scholar 

  6. Hansen TC, Henry PF, Fischer HE, Torregrossa J, Convert P (2008) The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer. Meas Sci Technol 19:034001

    Article  ADS  Google Scholar 

  7. Studer AJ, Hagen ME, Noakes TJ (2006) Wombat: the high-intensity powder diffractometer at the OPAL reactor. Physica B 385–386:1013–1015

    Article  Google Scholar 

  8. Hannon AC (2005) Results on disordered materials from the GEneral Materials diffractometer, GEM, at ISIS. Nucl Instrum Method A 551:88–107

    Article  ADS  Google Scholar 

  9. http://www.jcns.info/POWGEN

  10. Riley DP, Kisi EH, Wu E, Hansen T, Henry P (2010) Applications of in situ neutron diffraction to optimisation of novel materials synthesis. Studying kinetics with neutrons, Springer Series in solid state sciences, vol 161. Springer, Berlin/Heidelberg, pp 123–148

    Google Scholar 

  11. Kisi EH, Riley DP (2003) Neutron diffraction studies of self-propagating high-temperature synthesis. IUCr Comm Powder Diffr Newsl 29:18–20

    Google Scholar 

  12. Riley DP, Kisi EH, Hansen TC, Hewat AW (2002) Self-propagating high-temperature synthesis of Ti3SiC2: I, ultra-high-speed neutron diffraction study of the reaction mechanism. J Am Ceram Soc 85:2417–2424

    Article  Google Scholar 

  13. Kisi EH, Riley DP, Curfs C (2006) Ultra-high speed neutron diffraction studies of combustion synthesis. Physica B 385–386:487–492

    Article  Google Scholar 

  14. Riley DP, Kisi EH, Hansen TC (2008) Self-propagating high-temperature synthesis of Ti3SiC2: II. Kinetics of ultra-high-speed reactions from in situ neutron diffraction. J Am Ceram Soc 91:3207–3210

    Article  Google Scholar 

  15. Kisi EH, Riley DP (2002) Diffraction thermometry and differential thermal analysis. J Appl Crystallogr 35:664–668

    Article  Google Scholar 

  16. Curfs C, CanoI G, Vaughan GBM, Rodríguez MA, Turillas X, Kvick A (2000) Intermetallic-ceramic composites synthesis by SHS. Time-resolved studies using synchrotron radiation X-rays. Int J SHS 9:331–339

    Google Scholar 

  17. Curfs C, Cano IG, Vaughan GBM, Turillas X, Kvick A, Rodríguez MA (2002) TiC-NiAl composites obtained by SHS: a time-resolved XRD study. J Eur Ceram Soc 22:1039–1044

    Article  Google Scholar 

  18. Contreras L, Turillas X, Vaughan GBM, Kvick A, Rodríguez MA (2004) Time-resolved XRD study of TiC-TiB2 composites by SHS. Acta Mater 52:4783–4790

    Article  Google Scholar 

  19. Contreras L, Turillas X, Mas-Guindal MJ, Vaughan GBM, Kvick A, Rodríguez MA (2005) Synchrotron diffraction studies of TiC/FeTi cermets obtained by SHS. J Solid State Chem 178:1595–1600

    Article  ADS  Google Scholar 

  20. Mas-Guindal MJ, Contreras L, Turillas X, Vaughan GBM, Kvick A, Rodríguez MA (2006) Self-propagating high-temperature synthesis of TiC-WC composite materials. J Alloys Compd 419:227–233

    Article  Google Scholar 

  21. Curfs C, Turillas X, Vaughan GBM, Terry AE, Kvick A, Rodríguez MA (2007) Al-Ni intermetallics obtained by SHS; A time-resolved X-ray diffraction study. Intermetallics 15:1163–1171

    Article  Google Scholar 

  22. Wong J, Larson EM, Waide PA, Frahm R (2006) Combustion front dynamics in the combustion synthesis of refractory metal carbides and di-borides using time-resolved X-ray diffraction. J Synchrotron Radiat 13:326–335

    Article  Google Scholar 

  23. Parkin IP, Pankhurst QA, Affleck L, Aguas MD, Kuznetsov MV (2001) Self-propagating high temperature synthesis of BaFe12O19, Mg0.5Zn0.5Fe2O4 and Li0.5Fe2.5O4; time resolved X-ray diffraction studies (TRXRD). J Mater Chem 11:193–199

    Article  Google Scholar 

  24. Wong J (2003) Phase mapping and transformation dynamics in fusion welds. IUCr Comm Powder Diffr Newsl 29:26–30

    Google Scholar 

  25. Wong J, Ressler T, Elmer JW (2003) Dynamics of phase transformations and microstructure evolution in carbon-manganese steel arc welds using time-resolved synchrotron X-ray diffraction. J Synchrotron Radiat 10:154–167

    Article  Google Scholar 

  26. Palmer TA, Elmer JW, Babu SS (2004) Observation of ferrite/austenite transformations in the heat affected zone of 2205 duplex stainless steel spot welds using time resolved X-ray diffraction. Mater Sci Eng A 374:307–321

    Article  Google Scholar 

  27. Stone HJ, Bhadeshia HKDH, Withers PJ (2008) In situ monitoring of weld transformations to control weld residual stresses. Mater Sci Forum 571–572:393–398

    Article  Google Scholar 

  28. Komizo Y, Terasaki H (2010) In-situ observation of solidification behavior during welding. Mater Sci Forum 638–642:3722–3726

    Article  Google Scholar 

  29. Terasaki H, Komizo Y (2011) Diffusional and displacive transformation behavior in low carbon-low alloy steels studied by a hybrid in situ observation system. Scr Mater 64:29–32

    Article  Google Scholar 

  30. Elmer JW, Palmer TA, Specht ED (2007) In situ observation of sigma phase dissolution in 2205 duplex stainless steel using synchrotron X-ray diffraction. Mater Sci Eng A 459:151–155

    Article  Google Scholar 

  31. Zhang D, Terasaki H, Komizo Y (2009) In situ observation of phase transformation in Fe-0.15C binary alloy. J Alloys Compd 484:929–933

    Article  Google Scholar 

  32. Malard B, Pilch J, Sittner P, Delville R, Curfs C (2011) In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires. Acta Mater 59:1542–1556

    Article  Google Scholar 

  33. Epp J, Hirsch T, Curfs C (2012) In situ X-Ray diffraction analysis of unexpected carbon partitioning during quenching of low carbon steel. Metall Mater Trans A 43:2210–2217

    Article  Google Scholar 

  34. Epp J, Hirsch T, Kuznetsov A, Curfs C Martensite self-tempering in a ball bearing steel: in situ X-ray diffraction analysis during quenching (in preparation)

    Google Scholar 

  35. Chupas PJ, Chapman KW, Jennings G, Lee PL, Grey CP (2007) Watching nanoparticles grow: the mechanism and kinetics for the formation of TiO2-supported platinum nanoparticles. J Am Chem Soc 129:13822–13824

    Article  Google Scholar 

  36. Newton MA, Michiel MD, Kubacka A, Fernández-García M (2010) Combining time-resolved hard X-ray diffraction and diffuse reflectance infrared spectroscopy to illuminate CO dissociation and transient carbon storage by supported Pd nanoparticles during CO/NO cycling. J Am Chem Soc 132:4540–4541

    Article  Google Scholar 

  37. Pramanick A et al (2010) In situ neutron diffraction studies of a commercial, soft lead zirconatetitanate ceramic: response to electric fields and mechanical stress. Appl Phys A 99:557–564

    Article  ADS  Google Scholar 

  38. Santisteban JR, Daymond MR, James JA, Edwards L (2006) ENGIN-X: a third-generation neutron strain scanner. J Appl Crystallogr 39:812–825

    Article  Google Scholar 

  39. Jones JL et al (2007) Time-resolved and orientation-dependent electric-field-induced strains in lead zirconatetitanate ceramics. Appl Phys Lett 90:172909

    Article  ADS  Google Scholar 

  40. Davaasambuu J, Durand P, Techert S (2004) Experimental requirements for light-induced reactions. J Synchrotron Radiat 11:483–489

    Article  Google Scholar 

  41. Techert S, Zachariasse KA (2004) Structure determination of the intramolecular charge transfer state in crystalline 4-(diisopropylamino)benzonitrile from picoseconds X-ray diffraction. J Am Chem Soc 126:5593–5600

    Article  Google Scholar 

  42. Blome C, Tschentscher T, Davaasambuu J, Durand P, Techert S (2005) Femtosecond time-resolved powder diffraction experiments using hard X-ray free-electron lasers. J Syncrotron Radiat 12:812–819

    Article  Google Scholar 

  43. Stinton GW, Evans JSO (2007) Parametric Rietveld refinement. J Appl Crystallogr 40:87–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Fitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Fitch, A., Curfs, C. (2012). Ultrafast Powder Diffraction. In: Kolb, U., Shankland, K., Meshi, L., Avilov, A., David, W. (eds) Uniting Electron Crystallography and Powder Diffraction. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5580-2_8

Download citation

Publish with us

Policies and ethics