Synchrotron X-Ray Powder Diffraction

  • Fabia Gozzo
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The large breadth of the Synchrotron Radiation X-ray Powder Diffraction (SR-XRPD) technique inevitably requires that we make a certain number of choices in its discussion. Assuming you already have some knowledge of SR and XRPD, we explore the peculiar features that arise from combining them. From the perspective of a beamline scientist, we discuss aspects influencing the beamline optics, diffractometer, detectors and sample environments with attention to details important to perform outstanding SR-XRPD experiments. We begin with a brief overview of SR characteristics and properties and finish with a few SR-XRPD highlights. An extensive literature citation is provided for those who want to delve deeper into those topics that are inevitably not completely covered here.


Storage Ring Photon Beam Solid State Detector Position Sensitive Detector Multiple Magnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Behind successful SR beamlines there is always a team of people (always smaller than necessary) working enthusiastically together and sharing the many heavy tasks. At the SLS-MS we are, in alphabetic order: Antonio Cervellino, Fabia Gozzo, Michael Lange, Dominik Meister, and Philip Willmott. At the MS, we also have the chance to closely work with a fantastic detector group at PSI, which has delivered at PSI and worldwide outstanding new detector technology. MS is particularly grateful to Bernd Schmitt and Anna Bergamaschi.


  1. 1.
    Elder FR, Gurewitsch AM, Langmuir RV, Pollock HC (1947) Radiation from electrons in a synchrotron. Phys Rev 71:829–830ADSCrossRefGoogle Scholar
  2. 2.
    Blewett J (1998) Synchrotron radiation – early history. Synchrotron Radiat 5:135–139CrossRefGoogle Scholar
  3. 3.
    Baldwin GC (1975) Origin of synchrotron radiation. Phys Today 9Google Scholar
  4. 4.
    Helliwell JR (1998) Synchrotron Radiation and Crystallography: the First 50 Years. Acta Crystallogr A 54:738–749CrossRefGoogle Scholar
  5. 5.
    Margaritondo G (1988) Introduction to synchrotron radiation. Oxford University Press, New YorkGoogle Scholar
  6. 6.
    Margaritordo G (2002) Elements of synchrotron light. Oxford University Press, New YorkGoogle Scholar
  7. 7.
    Willmott P (2011) An introduction to synchrotron radiation: techniques and applications. Wiley, ChichesterCrossRefGoogle Scholar
  8. 8.
    Patterson BD, Abela R, Auderset H, Chen Q, Fauth F, Gozzo F, Ingold G, Kuehne H, Lange M, Maden D, Meister D, Pattison P, Schmidt T, Schmitt B, Schulze-Briese C, Shi X, Stampanoni M, Willmott PR (2005) The materials science beamline at the Swiss Light Source: design and realization. Nucl Instrum Methods A 540:42–46ADSCrossRefGoogle Scholar
  9. 9.
    Toby BH, Huang Y, Dohan D, Carroll D, Jiao X, Ribaud L, Doebbler JA, Suchomel MR, Wang J, Preissner C, Klinea D, Mooneya TM (2009) Management of metadata and automation for mail-in measurements with the APS 11-BM high-throughput, high-resolution synchrotron powder diffractometer. J Appl Crystallogr 42:990–993CrossRefGoogle Scholar
  10. 10.
    Wallwork KS, Kennedy BJ, Wang D (2007) The High Resolution Powder Diffraction Beamline for the Australian Synchrotron. AIP Conf Proc 879(1):879–882ADSCrossRefGoogle Scholar
  11. 11.
    Tang CC, Roberts MA, Azough F, Leach C, Freer R (2002) Synchrotron X-ray Diffraction Study of Ba4.5Nd9Ti18O54 Microwave Dielectric Ceramics at 10-295 K. J Mater Res 17:675–682ADSCrossRefGoogle Scholar
  12. 12.
    Masson O, Dooryhee E, Cheary RW, Fitch AN (2001) Instrumental Resolution Function of the ESRF Powder Diffraction Beamline BM16. Mater Sci Forum 300:378–381. See also:
  13. 13.
    Van Beek W, Safonova OV, Wiker G, Emerich H (2011) SNBL, a dedicated beamline for combined in situ X-ray diffraction, X-ray absorption and Raman scattering experiments. Ph Transit 84(8):726–732CrossRefGoogle Scholar
  14. 14.
    Birkholz M (2006) Thin film analysis by X-ray scattering. Wiley, WeinheimGoogle Scholar
  15. 15.
    Gozzo F, Schmitt B, Bortolamedi T, Giannini C, Guagliardi A, Lange M, Meister D, Maden D, Willmott PR, Patterson BD (2004) First experiments at the Swiss Light Source Materials Science beamline powder diffractometer. J Alloy Compd 362:206–217CrossRefGoogle Scholar
  16. 16.
    Hodeau J-L, Bordet P, Anne M, Prat A, Fitch AN, Dooryhee E, Vaughan G, Freund A (1998) Nine crystal multianalyzer stage for high-resolution powder diffraction between 6 and 40 keV. SPIE Proc 3448:353–361ADSCrossRefGoogle Scholar
  17. 17.
    Bergamaschi A, Cervellino A, Dinapoli R, Gozzo F, Henrich B, Johnson I, Kraft P, Mozzanica A, Schmitt B, Shi X (2010) The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source. J Synchrotron Radiat 17(5):653–668CrossRefGoogle Scholar
  18. 18.
    Chupas PJ, Qiu X, Hanson JC, Lee PL, Grey CP, Billinge S (2003) Rapid-acquisition pair distribution function (RA-PDF) analysis. J Appl Crystallogr 36:1342–1347CrossRefGoogle Scholar
  19. 19.
    Chupas PJ, Chapman KW, Lee PL (2007) Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements. J Appl Crystallogr 40:463–470CrossRefGoogle Scholar
  20. 20.
    Schlepuetz CM, Herger R, Willmott PR, Patterson BD, Bunk O, Broennimann C, Henrich B, Huelsen G, Eikenberry EF (2005) Improved data acquisition in grazing-incidence X-ray scattering experiments using a pixel detector. Acta Crystallogr A 61:418ADSCrossRefGoogle Scholar
  21. 21.
    See extensive technical information on the company web site at:
  22. 22.
    Brunelli M, Wright JP, Vaughan GBM, Mora AJ, Fitch AN (2003) Solving Larger Molecular Crystal Structures from Powder Diffraction Data by Exploiting Anisotropic Thermal Expansion. Angew Chem 115:2075–2078CrossRefGoogle Scholar
  23. 23.
    Wessels T, Baerlocher C, McCusker LB (1999) Single-crystal-like diffraction data from polycrystalline materials. Science 284:477–479ADSCrossRefGoogle Scholar
  24. 24.
    David WIF, Shankland K (2008) Structure determination from powder diffraction data. Acta Crystallogr A 64:52–64ADSCrossRefGoogle Scholar
  25. 25.
    Altomare A, Cuocci C, Giacovazzo C, Maggi S, Moliterni A, Rizzi R (2009) Correcting electron-density resolution bias in reciprocal space. Acta Crystallogr A 65:183–189ADSCrossRefGoogle Scholar
  26. 26.
    Oszlanyi G, Suto A, Czugler M, Parkanyi L (2006) Charge flipping at work: a case of pseudosymmetry. J Am Chem Soc 128:8392–8839CrossRefGoogle Scholar
  27. 27.
    David WIF, Shankland K, McCusker LB, Baerlocher C (eds) (2002) Structure determination from powder diffraction data. Oxford University Press, OxfordGoogle Scholar
  28. 28.
    Guagliardi A, Masciocchi N (eds) (2010) Diffraction at the nanoscale: nanocrystals, defective & amorphous materials. Insubria University Press, ComoGoogle Scholar
  29. 29.
    Margiolaki I, Wright JP, Fitch AN, Fox GC, Von Dreele, RB (2005) Synchrotron X-ray powder diffraction study of hexagonal turkey egg-white lysozyme. See also: Powder crystallography on macromolecules. Acta Crystallogr D61:423–432. See also: Margiolaki I, Wright, JP (2008) Acta Crystallogr A64:169–180Google Scholar
  30. 30.
    Padar S, Merhle YE, Windhab EJ (2009) Shear-induced crystal formation and transformation in cocoa butter. Cryst Growth Des 9:4023–4031; See also: ESRF highlights at
  31. 31.
    Cernuto G, Masciocchi N, Cervellino A, Colonna GM, Guagliardi A (2011) Size and Shape Dependence of the Photocatalytic Activity of TiO2 Nanocrystals: A Total Scattering Debye Function Study. J Am Chem Soc 133:3114–3119CrossRefGoogle Scholar
  32. 32.
    Harris KDM (2002) Structure determination of molecular materials from powder diffraction data. Curr Opin Solid State Mater Sci 6:125–130ADSCrossRefGoogle Scholar
  33. 33.
    Niederwanger V, Gozzo F, Griesser U (2009) Characterization of Four Crystal Polymorphs and a Monohydrate of S-Bupivacaine Hydrochloride (Levobupivacaine Hydrochloride). J Pharm Sci 98:1064–1074CrossRefGoogle Scholar
  34. 34.
    Holton JM (2009) A beginner's guide to radiation damage. J Synchrotron Radiat 16:133–142CrossRefGoogle Scholar
  35. 35.
    Bruni G, Gozzo F, Capsoni D, Bini M, Macchi P, Simoncic P, Berbenni V, Milanese C, Girella A, Ferrari S, Marini A (2011) Thermal, Spectroscopic, and Ab Initio Structural Characterization of Carprofen Polymorphs. J Pharm Sci 100(6):2321–2332CrossRefGoogle Scholar
  36. 36.
    Vaucher S, Nicula R (2008) Frontiers in microwave process monitoring. Chem Today 26(3):38–39Google Scholar
  37. 37.
    Vaucher S, Nicula R, Catala-Civera JM, Patterson B, Schmitt B (2008) In situ synchrotron radiation monitoring of phase transitions during microwave heating of Al–Cu–Fe alloys. J Mater Res 23(1):170–175ADSCrossRefGoogle Scholar
  38. 38.
    Fadenberger K, Gunduz IE, Tsotsos C, Kokonou M, Gravani D, Brandstetter D, Bergamaschi S, Schmitt B, Mayrhofer PH, Doumanidis CC, Rebholz C (2010) In situ observation of rapid reactions in nanoscale Ni-Al multilayer foils using synchrotron radiation. Appl Phys Lett 97:144101ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Paul Scherrer Institute – Swiss Light SourceVilligen PSISwitzerland
  2. 2.Excelsus Structural Solutions S.P.R.LBrusselsBelgium

Personalised recommendations