Advertisement

Detection of Magnetic Circular Dichroism Using TEM and EELS

  • Stefano Rubino
  • Jan Rusz
  • Peter Schattschneider
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Magnetic Circular Dichroism (MCD) is a phenomenon that occurs in magnetic materials whereby the intensity of transitions from core states to available states above the Fermi energy depends on the circular polarization of the exciting radiation. This is due to the fact that spin-orbit coupling breaks the degeneracy of core states with different total angular momentum (J) and the magnetic field gives rise to difference in spin-up/spin-down density of available states. Traditionally, those transitions are excited with X-rays (XMCD). We present here a new technique by which a virtual circularly polarized photon is absorbed in Electron Energy-Loss Spectroscopy (EELS), giving rise to EELS-MCD (EMCD). The basis of this work is the equivalence between photon polarization (ε) and electron momentum transfer (h q) in the determination of the scattering cross section. The equivalent of circular polarization in EELS is achieved through special scattering conditions as interference between Bloch waves in a crystal. Angular resolved EELS is then used to measure spectra under different polarization conditions, from which information about the magnetic properties can be extracted, in particular the ratio of spin to orbital contribution to the magnetization. Measurements can be performed by simply recording spectra at two particular symmetric points in reciprocal space or by acquiring the whole diffraction pattern trough a series of energy filtered images. Spatial dichroic maps can be obtained too either in EELS STEM or by EFTEM. The advantage with respect to XMCD lies in the higher spatial resolution (2 nm). However, since the magnetic information is intrinsically entangled with dynamical diffraction, DFT simulations of the momentum space are required to extract quantitative information from the measurement. We present an example in this work. This also means that the measured difference depends on parameters such as crystal thickness and orientation. It has been recently proposed that a way to overcome this limitation would be to use so-called electron vortex beams. EMCD would then be applied to a larger class of samples and become a true complementary alternative to XMCD.

Keywords

Circular Polarization Reciprocal Space Magnetic Circular Dichroism Bloch Wave Linear Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Erskine JL, Stern EA (1975) Calculation of the M2,3 magneto-optical absorption spectrum of ferromagnetic nickel. Phys Rev B 12:5016–5024ADSCrossRefGoogle Scholar
  2. 2.
    Schütz G, Wagner W, Wilhelm W, Kienle P, Zeller R, Frahm R, Materlik G (1987) Absorption of circularly polarized X-rays in iron. Phys Rev Lett 58:737–740ADSCrossRefGoogle Scholar
  3. 3.
    Chen CT, Sette F, Ma Y, Modesti S (1990) Soft-X-ray magnetic circular dichroism at the L2,3 edges of nickel. Phys Rev B 42:7262–7265ADSCrossRefGoogle Scholar
  4. 4.
    Lovesey SW, Collins SP (1996) X-Ray scattering and absorption by magnetic materials. Clarendon, OxfordGoogle Scholar
  5. 5.
    Thole BT, Carra P, Sette F, van der Laan G (1992) X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett 68:1943–1946ADSCrossRefGoogle Scholar
  6. 6.
    Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 70:694–697ADSCrossRefGoogle Scholar
  7. 7.
    Chen CT, Idzerda YU, Lin HJ, Smith NV, Meigs G, Chaban E, Ho GH, Pellegrin E, Sette F (1995) Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett 75:152–155ADSCrossRefGoogle Scholar
  8. 8.
    Rubino S (2007) Magnetic circular dichroism in the transmission electron microscope. PhD thesis, Vienna University of TechnologyGoogle Scholar
  9. 9.
    Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum Press, New YorkGoogle Scholar
  10. 10.
    Hitchcock AP (1993) Near edge electron energy loss spectroscopy: comparison to X-ray absorption. Jpn J Appl Phys 32:176–181Google Scholar
  11. 11.
    Yuan J, Menon NK (1997) Magnetic linear dichroism in electron energy loss spectroscopy. J Appl Phys 81:5087–5089ADSCrossRefGoogle Scholar
  12. 12.
    Hébert C, Schattschneider P (2003) A proposal for dichroic experiments in the electron microscope. Ultramicroscopy 96:463–468CrossRefGoogle Scholar
  13. 13.
    Hébert C, Schattschneider P, Rubino S, Novák P, Rusz J, Stöger-Pollach M (2003) Magnetic circular dichroism in electron energy loss spectrometry. Ultramicroscopy 108:277–284CrossRefGoogle Scholar
  14. 14.
    Verbeeck J, Tian H, Schattschneider P (2010) Production and application of electron vortex beams. Nature 467:301–304ADSCrossRefGoogle Scholar
  15. 15.
    Nelhiebel M, Schattschneider P, Jouffrey B (2000) Observation of ionization in a crystal interferometer. Phys Rev Lett 85:1847–1850Google Scholar
  16. 16.
    Schattschneider P, Rubino S, Hébert C, Rusz J, Kunes J, Novák P, Carlino E, Fabrizioli M, Panaccione G, Rossi G (2006) Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441:486–488ADSCrossRefGoogle Scholar
  17. 17.
    Rubino S, Schattschneider P, Rusz J, Verbeeck J, Leifer K (2010) Simulation of magnetic circular dichroism in the electron microscope. J Phys D Appl Phys 43:474005ADSCrossRefGoogle Scholar
  18. 18.
    Rusz J, Oppeneer PM, Lidbaum H, Rubino S, Leifer K (2009) Asymmetry of the two-beam geometry in EMCD experiments. J Microsc 237:465–468MathSciNetCrossRefGoogle Scholar
  19. 19.
    Verbeeck J, Hébert C, Rubino S, Novák P, Rusz J, Houdellier F, Gatel C, Schattschneider P (2008) Optimal aperture sizes and positions for EMCD experiments. Ultramicroscopy 108:865–872CrossRefGoogle Scholar
  20. 20.
    Rusz J, Rubino S, Schattschneider P (2007) First-principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets. Phys Rev B 75:214425ADSCrossRefGoogle Scholar
  21. 21.
    Rusz J, Novák P, Rubino S, Hébert C, Schattschneider P (2008) Magnetic circular dichroism in electron microscopy. Acta Phys Pol A 113:599–604Google Scholar
  22. 22.
    Warot-Fonrose B, Houdellier F, Hÿtch MJ, Calmels L, Serin V, Snoeck E (2008) Mapping inelastic intensities in diffraction patterns of magnetic samples using the energy spectrum imaging technique. Ultramicroscopy 108:393–398CrossRefGoogle Scholar
  23. 23.
    Lidbaum H, Rusz J, Liebig A, Hjörvarsson B, Oppeneer PM, Coronel E, Eriksson O, Leifer K (2009) Quantitative magnetic information from reciprocal space maps in transmission electron microscopy. Phys Rev Lett 102:037201ADSCrossRefGoogle Scholar
  24. 24.
    Lidbaum H, Rusz J, Rubino S, Liebig A, Hjörvarsson B, Oppeneer PM, Eriksson O, Leifer K (2010) Reciprocal and real space maps for EMCD experiments. Ultramicroscopy 110:1380CrossRefGoogle Scholar
  25. 25.
    Rusz J, Eriksson O, Novák P, Oppeneer PM (2007) Sum rules for electron energy loss near edge spectra. Phys Rev B 76:060408(R)ADSCrossRefGoogle Scholar
  26. 26.
    Schattschneider P, Rubino S, Stöger-Pollach M, Hébert C, Rusz J, Calmels L, Snoeck E (2008) Energy loss magnetic chiral dichroism: a new technique for the study of magnetic properties in the electron microscope. J Appl Phys 103:07D931CrossRefGoogle Scholar
  27. 27.
    Rusz J, Lidbaum H, Liebig A, Hjörvarsson B, Oppeneer PM, Rubino S, Eriksson O, Leifer K (2010) Quantitative magnetic measurements with transmission electron microscope. J Magn Magn Mater 322:1478–1480ADSCrossRefGoogle Scholar
  28. 28.
    Rusz J, Lidbaum H, Rubino S, Hjörvarsson B, Oppeneer PM, Eriksson O, Leifer K (2011) Influence of plural scattering on the quantitative determination of spin and orbital moments in electron magnetic chiral dichroism measurements. Phys Rev B 83:132402ADSCrossRefGoogle Scholar
  29. 29.
    Schattschneider P, Verbeeck J, Hamon AL (2009) Real space maps of atomic transitions. Ultramicroscopy 109:781–787CrossRefGoogle Scholar
  30. 30.
    Schattschneider P, Ennen I, Stöger-Pollach M, Verbeeck J, Mauchamp V, Jaouen M (2010) Real space maps of magnetic moments on the atomic scale: theory and feasibility. Ultramicroscopy 110:1038–1041CrossRefGoogle Scholar
  31. 31.
    Schattschneider P, Hébert C, Rubino S, Stöger-Pollach M, Rusz J, Novák P (2008) Magnetic circular dichroism in EELS: towards 10 nm resolution. Ultramicroscopy 108:433–438CrossRefGoogle Scholar
  32. 32.
    Schattschneider P, Stöger-Pollach M, Rubino S, Sperl M, Hurm C, Zweck J, Rusz J (2008) Detection of magnetic circular dichroism on the 2 nanometer scale. Phys Rev B 78:104413ADSCrossRefGoogle Scholar
  33. 33.
    Rubino S, Schattschneider P, Stöger-Pollach M, Hébert C, Rusz J, Calmels L, Warot-Fonrose B, Houdellier F, Serin V, Novák P (2008) Energy-loss magnetic chiral dichroism (EMCD): magnetic chiral dichroism in the electron microscope. J Mater Res 23:2582–2590ADSCrossRefGoogle Scholar
  34. 34.
    Klie RF, Yuan T, Tanase M, Yang G, Ramasse Q (2010) Direct measurement of ferromagnetic ordering in biaxially strained LaCoO3 thin films. Appl Phys Lett 96:082510ADSCrossRefGoogle Scholar
  35. 35.
    Zhang ZH, Wang X, Xu JB, Muller S, Ronning C, Li Q (2009) Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures. Nat Nanotechnol 4:523–527ADSCrossRefGoogle Scholar
  36. 36.
    Stöger-Pollach M, Treiber CD, Resch GP, Keays DA, Ennen I (2011) EMCD real space maps of magnetospirillum magnetotacticum. Micron 47:456–460CrossRefGoogle Scholar
  37. 37.
    Verbeeck J et al (2011) Atomic scale electron vortices for nanoresearch. Appl Phys Lett 99:203109ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Stefano Rubino
    • 1
  • Jan Rusz
    • 2
  • Peter Schattschneider
    • 3
  1. 1.Department of Engineering SciencesUppsala UniversityUppsalaSweden
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Institute for Solid State PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations