Skip to main content

Combination of X-ray Powder Diffraction, Electron Diffraction and HRTEM Data

  • Conference paper
  • First Online:
Uniting Electron Crystallography and Powder Diffraction

Abstract

A combination of X-ray and electron scattering data can facilitate structure analysis of polycrystalline materials that are problematic to study by conventional methods. Different electron diffraction data collection techniques as well as high-resolution imaging are described. A number of diverse algorithms of data combination and their applications to structural analysis of several materials systems are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. David WIF, Shankland K (2008) Structure determination from powder diffraction data. Acta Crystallogr A 64:52–64

    Article  ADS  Google Scholar 

  2. Dorset DL (1995) Structural electron crystallography. Plenum Press, New York

    Google Scholar 

  3. Zou XD, Hovmöller S (2008) Electron crystallography: imaging and single-crystal diffraction from powders. Acta Crystallogr A 64:149–160

    Article  ADS  Google Scholar 

  4. David WIF, Shankland K, McCusker LB, Baerlocher C (eds) (2002) Structure determination from powder diffraction data. Oxford University Press, Oxford

    Google Scholar 

  5. Baerlocher C, McCusker LB (2004) Structure determination from powder diffraction data. Z Kristallogr 219(Special Issue):782–901

    Article  Google Scholar 

  6. Miller R, DeTitta GT, Jones R, Langs DA, Weeks CM, Hauptman HA (1993) On the application of the minimal principle to solve unknown structures. Science 259:1430

    Article  ADS  Google Scholar 

  7. Oszlányi G, Sütő A (2008) Ab initio structure solution by charge flipping. Acta Crystallogr A 64:123–134

    Article  ADS  Google Scholar 

  8. Grosse-Kunstleve RW, McCusker LB, Baerlocher C (1997) Powder diffraction data and chemical information combined in an automated structure determination procedure for zeolites. J Appl Crystallogr 30:985–995

    Article  Google Scholar 

  9. Brenner S, McCusker LB, Baerlocher C (1997) Using a structure envelope to facilitate structure solution from powder diffraction data. J Appl Crystallogr 30:1167–1172

    Article  Google Scholar 

  10. Brenner S, McCusker LB, Baerlocher C (2002) The application of structure envelopes in structure determination from powder diffraction data. J Appl Crystallogr 235:243–252

    Article  Google Scholar 

  11. Vincent R, Midgley PA (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53:271–282

    Article  Google Scholar 

  12. Oleynikov P, Hovmöller S, Zou XD (2007) Precession electron diffraction: observed and calculated intensities. Ultramicroscopy 107:523–533

    Article  Google Scholar 

  13. Weirich TE, Portillo J, Cox G, Hibst H, Nicolopoulos S (2006) Ab initio determination of the framework structure of the heavy-metal oxide CsxNb2.54W2.46O14 from 100 kV precession electron diffraction data. Ultramicroscopy 106(1):64–175

    Google Scholar 

  14. Dorset DL, Gilmore CJ, Jorda JL, Nicolopoulos S (2007) Direct electron crystallographic determination of zeolite zonal structures. Ultramicroscopy 107:462–473

    Article  Google Scholar 

  15. Gilmore CJ, Dong W, Dorset DL (2008a) Solving the crystal structures of zeolites using electron diffraction data. I. The use of potential-density histograms. Acta Crystallogr A 64:284–294; Gilmore CJ, Dong W, Dorset DL (2008b) Solving the crystal structures of zeolites using electron diffraction data. II. Density-building functions. Acta Crystallogr A 64:295–302

    Google Scholar 

  16. Boullay P, Dorcet V, Perez O, Grygiel C, Prellier W, Mercey B, Hervieu M (2009) Structure determination of a brownmillerite Ca2Co2O5 thin film by precession electron diffraction. Phys Rev B 79:184108

    Article  ADS  Google Scholar 

  17. Hovmöller S (1992) CRISP: crystallographic image processing on a personal computer. Ultramicroscopy 41:121–135

    Article  Google Scholar 

  18. Baerlocher C, McCusker LB, Palatinus L (2007) Charge flipping combined with histogram matching to solve complex crystal structures from powder diffraction data. Z Kristallogr 222:47–53

    Article  Google Scholar 

  19. Palatinus L, Chapuis G (2007) SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790

    Article  Google Scholar 

  20. Zhang KYJ, Main P (1990) Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr A 46:41–46

    Article  Google Scholar 

  21. Corma A, Rey F, Valencia S, Jorda JL, Rius J (2003) A zeolite with interconnected 8–10- and 12-ring pores and its unique catalytic selectivity. Nature Mater 2:493–497

    Article  ADS  Google Scholar 

  22. Gramm F (2007) Kombination von Transmissions-Elektronenmikroskopie mit Pulver-Beugungsdaten zur Lösung von komplexen Zeolith-Strukturen. Ph.D. thesis, ETH Zurich, Switzerland

    Google Scholar 

  23. Oszlányi G, Sütő A (2004) Ab initio structure solution by charge flipping. Acta Crystallogr A 60:134–141; Oszlányi G, Sütő A (2005) Ab initio structure solution by charge flipping II. Use of weak reflections. Acta Crystallogr A 61:147–152

    Google Scholar 

  24. Gramm F, Baerlocher C, McCusker LB, Warrender SJ, Wright PA, Han B, Hong SB, Liu Z, Ohsuna T, Terasaki O (2006) Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444:79–81

    Article  ADS  Google Scholar 

  25. Baerlocher C, Gramm F, Massüger L, McCusker LB, He Z, Hovmöller S, Zou X (2007) Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315:1113–1116

    Article  ADS  Google Scholar 

  26. Baerlocher C, Xie D, McCusker LB, Hwang SJ, Chan IY, Ong K, Burton AW, Zones SI (2008) Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Mater 7:631–635

    Article  ADS  Google Scholar 

  27. Xie D, Baerlocher C, McCusker LB (2008) Combining precession electron diffraction data with X-ray powder diffraction data to facilitate structure solution. J Appl Crystallogr 41:1115–1121

    Article  Google Scholar 

  28. Dorset DL (2006) The crystal structure of ZSM-10, a powder X-ray and electron diffraction study. Z Kristallogr 221:260–265

    Article  Google Scholar 

  29. Dorset DL, Strohmaier KG, Kliewer CE, Corma A, Diaz-Cabanas MJ, Rey F, Gilmore CJ (2008) Crystal structure of ITQ-26, a 3D framework with extra-large pores. Chem Mater 20:5325–5331

    Article  Google Scholar 

  30. Gilmore CJ, Dong W, Bricogne G (1999) A multisolution method of phase determination by combined maximization of entropy and likelihood. VI. The use of error-correcting codes as a source of phase permutation and their application to the phase problem in powder, electron and macromolecular crystallography. Acta Crystallogr A 55:70–83

    Article  Google Scholar 

  31. Sun J, Bonneau C, Cantín Á, Corma A, Díaz-Cabañas MJ, Moliner M, Zhang D, Li M, Zou X (2009) The ITQ-37 mesoporous chiral zeolite. Nature 458:1154–1158

    Article  ADS  Google Scholar 

  32. Zou XD, Sukharev Y, Hovmöller S (1993) Quantitative measurement of intensities from electron diffraction patterns for structure determination – new features in the program system ELD. Ultramicroscopy 52:436–444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Baerlocher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Baerlocher, C., McCusker, L.B. (2012). Combination of X-ray Powder Diffraction, Electron Diffraction and HRTEM Data. In: Kolb, U., Shankland, K., Meshi, L., Avilov, A., David, W. (eds) Uniting Electron Crystallography and Powder Diffraction. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5580-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5580-2_28

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5579-6

  • Online ISBN: 978-94-007-5580-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics