Electron Crystallography – New Methods to Explore Structure and Properties of the Nano World

  • Ute Kolb
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Electron crystallography, as the branch of science that uses electron scattering, developed in the last century into a manifold and powerful approach to study the structure of matter. Major historical milestones of this development are discussed. Especially electron diffraction experienced recently a renaissance and grew into an established method of structure analysis. The techniques of data collection and processing available nowadays are described.


High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Nobel Prize Scanning Transmission Electron Microscopy Electron Energy Loss Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ewald PP (1962) Fifty years of X-ray diffraction. International Union of Crystallographers, Utrecht, The NetherlandsCrossRefGoogle Scholar
  2. 2.
    von Laue M (1913) Eine quantitative Prüfung der Theorie für die Interferenzerscheinungen bei Röntgenstrahlen. Ann Phys 41:989–1002CrossRefGoogle Scholar
  3. 3.
    Bragg WH (1912) The specular reflection of X-rays. Nature 90:410ADSCrossRefGoogle Scholar
  4. 4.
    Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. Proc Camb Philos Soc 17:43–57zbMATHGoogle Scholar
  5. 5.
    Bragg WH (1913) The reflections of X-rays by crystals (II). Proc R Soc Lond A89:246–248ADSGoogle Scholar
  6. 6.
    Bragg WL (1913) The structure of some crystals as indicated by their diffraction of X-rays. Proc R Soc Lond A89:248–277ADSGoogle Scholar
  7. 7.
    Holton JM, Frankel KA (2010) The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr D66:393–408Google Scholar
  8. 8.
    Debye P (1915) Zerstreuung von Röntgenstrahlen. Ann Phys 46:809–823CrossRefGoogle Scholar
  9. 9.
    Debye P, Scherrer P (1916) Interferenzen an regellos orientierten Teilchen im Röntgenlicht. Physik Z 17:277–283Google Scholar
  10. 10.
    Hull AW (1917) A new method of X-ray crystal analysis. Phys Rev 10:661–696ADSCrossRefGoogle Scholar
  11. 11.
    Hull AW (1919) A new method for chemical analysis. J Am Chem Soc 41:1168–1175CrossRefGoogle Scholar
  12. 12.
    Hull AW (1921) The X-ray crystal analysis of thirteen common metals. Phys Rev 17:571–588ADSCrossRefGoogle Scholar
  13. 13.
    Warren BE (1934) An X-ray powder diffraction study of Carbon Black. J Chem Phys 2:551–555ADSCrossRefGoogle Scholar
  14. 14.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  15. 15.
    Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachrichten Gesell 2:98–100Google Scholar
  16. 16.
    Davisson CJ, Germer LH (1927) The scattering of electrons by a single crystal of nickel. Nature 119:558–560ADSCrossRefGoogle Scholar
  17. 17.
    Davisson CJ, Germer LH (1927) Diffraction of electrons by a crystal of nickel. Phys Rev 30:705–740ADSCrossRefGoogle Scholar
  18. 18.
    Thomson GP, Reid A (1927) Diffraction of cathode rays by a thin film. Nature 119:890–890ADSCrossRefGoogle Scholar
  19. 19.
    Ruska E, Knoll M (1931) Die magnetische Sammelspule für schnelle Elektronenstrahlen. Z Tech Physik 12:389–400, 448Google Scholar
  20. 20.
    Knoll M, Ruska E (1932) Das Elektronenmikroskop. Z Physik 78:318–339ADSCrossRefGoogle Scholar
  21. 21.
    Ruska E (1935) The electron microscope as ultra-microscope. Res Prog 1:18–19Google Scholar
  22. 22.
    Cowley JM, Goodman P, Vainshtein BK, Zvyagin BB, Dorset DL (2001) Electron diffraction and electron microscopy in structure determination. In: Shmueli U (ed) International tables for crystallography, vol B, 2nd edn, Reciprocal space. Kluwer Academic Publishers, DordrechtGoogle Scholar
  23. 23.
    Cowley JM (1953) Structure analysis of single crystals by electron diffraction. II. Disordered boric acid structure. Acta Crystallogr 6:522–529CrossRefGoogle Scholar
  24. 24.
    Cowley JM (1953) Structure analysis of single crystals by electron diffraction. III. Modification of alumina. Acta Crystallogr 6:846–853CrossRefGoogle Scholar
  25. 25.
    Rigamonti R (1936) La struttura della catena paraffinica studiata mediante i raggi di elettroni. Gazzetta Chimica Italiana 66:174–182Google Scholar
  26. 26.
    Cowley JM, Moodie AF (1957) The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10:609–619MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cowley JM, Moodie AF (1959) The scattering of electrons by atoms and crystals. II. The effects of finite source size. Acta Crystallogr 12:353–359CrossRefGoogle Scholar
  28. 28.
    Cowley JM, Moodie AF (1959) The scattering of electrons by atoms and crystals. III. Single-crystal diffraction patterns. Acta Crystallogr 12:360–367CrossRefGoogle Scholar
  29. 29.
    Avilov AS (2003) The quantitative analysis of electrostatic potential and study of chemical bonding by electron diffraction structure analysis. Z Kristallogr 218:247–258CrossRefGoogle Scholar
  30. 30.
    Pennycook SJ (1992) Z-contrast transmission electron microscopy-direct atomic imaging of materials. Annu Rev Mater Sci 22:171–195ADSCrossRefGoogle Scholar
  31. 31.
    Scherzer O (1936) Über einige Fehler von Elektronenlinsen. Z Phys 101:593–603ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Spence JCH (2003) High-resolution electron microscopy, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  33. 33.
    Reimer L, Kohl H (2008) Transmission electron microscopy, physics of image formation, 5th edn. Springer, New YorkGoogle Scholar
  34. 34.
    Rose H (1990) Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85:19–24Google Scholar
  35. 35.
    O’Keefe MA (2004) Seeing atoms at sub-Ångstrom resolution with aberration-corrected TEM. Microsc Microanal 10:972–973Google Scholar
  36. 36.
    Tanaka M, Terauchi M, Kaneyama T, Tsuda M, Saitoh K (1985) Convergent beam electron diffraction, vol I–IV. JEOL, TokyoGoogle Scholar
  37. 37.
    Sung CM, Williams DB (1991) Principles and applications of convergent beam electron diffraction: a bibliography (1938–1990). Microsc Res Tech 17:95–118Google Scholar
  38. 38.
    Buxton BF, Eades JA, Steeds JW, Rackham GM (1976) The symmetry of electron diffraction zone-axis patterns. Philos Trans R Soc Lond A 281:181–184ADSCrossRefGoogle Scholar
  39. 39.
    Nakashima PNH, Moodie AF, Etheridge J (2007) Structural phase and amplitude measurement from distances in convergent-beam electron diffraction patterns. Acta Crystallogr A63:387–390ADSGoogle Scholar
  40. 40.
    Pinsker ZG (1949) Diffraktsiya Elektronov. Akad. Nauk SSSR Press, Moscow/Leningrad, Engl. transl: Electron diffraction (1953). Butterworths, LondonGoogle Scholar
  41. 41.
    Zvyagin BB (1967) Electron diffraction analysis of clay mineral structures. Plenum Press, New YorkCrossRefGoogle Scholar
  42. 42.
    Vainshtein BK (1956) Strukturnaya Elektronographiya. Akad Nauk SSSR Press, Moscow, Engl. transl: Structure analysis by electron diffraction (1964). Pergamon Press, OxfordGoogle Scholar
  43. 43.
    Vainshtein BK, Zvyagin BB, Avilov AS (1992) In: Cowley JM (ed) Electron diffraction structure analysis, vol 1. pp. 216–312. Oxford University Press, OxfordGoogle Scholar
  44. 44.
    Geil PH (1960) Nylon single crystals. J Polym Sci 44:449–458ADSCrossRefGoogle Scholar
  45. 45.
    Dorset DL (1995) Structural electron crystallography. Plenum, New YorkGoogle Scholar
  46. 46.
    Dorset DL, Gilmore C (2000) Prospects for kinematical least-squares refinement in polymer electron crystallography. Acta Crystallogr A56:62–67Google Scholar
  47. 47.
    Hovmöller S, Sjogren A, Farrants G, Sundberg M, Marinder BO (1984) Accurate atomic positions from electron microscopy. Nature 311:238–241ADSCrossRefGoogle Scholar
  48. 48.
    Voigt-Martin IG, Yan DH, Wortmann R, Elich K (1995) The use of simulation methods to obtain the structure and conformation of 10-cyano-9,9′-bianthryl by electron diffraction and high-resolution imaging. Ultramicroscopy 57:29–43CrossRefGoogle Scholar
  49. 49.
    Weirich TE, Ramlau R, Simon A, Hovmöller S, Zou X (1996) A crystal structure determined with 0.02 Å accuracy by electron microscopy. Nature 382:144–146ADSCrossRefGoogle Scholar
  50. 50.
    Vincent R, Midgley PA (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53:271–282CrossRefGoogle Scholar
  51. 51.
    Avilov A, Kuligin K, Nicolopoulos S, Nickolskiy M, Boulahya K, Portillo J, Lepeshov G, Sobolev B, Collette JP, Martin N, Robins AC, Fischione P (2007) Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination. Ultramicroscopy 107:431–444CrossRefGoogle Scholar
  52. 52.
    Gemmi M, Nicolopoulos S (2007) Structure solution with three-dimensional sets of precessed electron diffraction intensities. Ultramicroscopy 107:483–494CrossRefGoogle Scholar
  53. 53.
    Own CS (2005) System design and verification of the precession electron diffraction technique. Ph.D. thesis, Northwestern University, EvanstonGoogle Scholar
  54. 54.
    Gjönnes J, Hansen V, Berg BS, Runde P, Cheng YF, Gjönnes K, Dorset DL, Gilmore CJ (1998) Structure model for the phase AlmFe derived from three-dimensional electron diffraction intensity data collected by a precession technique. Comparison with convergent-beam diffraction. Acta Crystallogr A54:306–319Google Scholar
  55. 55.
    Gemmi M, Zou X, Hovmöller S, Migliori A, Vennström M, Andersson Y (2003) Structure of Ti2P solved by three-dimensional electron diffraction data collected with the precession technique and high-resolution electron microscopy. Acta Crystallogr A59:117–126Google Scholar
  56. 56.
    Gjönnes J, Hansen V, Kverneland A (2004) The precession technique in electron diffraction and its application to structure determination of nano-size precipitates in alloys. Microsc Microanal 10:16–20ADSCrossRefGoogle Scholar
  57. 57.
    Weirich TE, Portillo J, Cox G, Hibst H, Nicolopoulos S (2006) Ab initio determination of the framework structure of the heavy-metal oxide CsxNb2.54W2.46O14 from 100 kV precession electron diffraction data. Ultramicroscopy 106:164–175CrossRefGoogle Scholar
  58. 58.
    Dorset DL, Hauptman HA (1976) Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals. Ultramicroscopy 1:195–201CrossRefGoogle Scholar
  59. 59.
    Dorset DL (1995) Structural electron crystallography. Plenum Press, New YorkGoogle Scholar
  60. 60.
    Dorset DL (1995) Direct structure analysis in protein electron crystallography: crystallographic phases for halorhodopsin to 6-A resolution. Proc Natl Acad Sci USA 92:10074–10078ADSCrossRefGoogle Scholar
  61. 61.
    Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621ADSCrossRefGoogle Scholar
  62. 62.
    Unwin PNT, Henderson R (1976) Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol 94:425–440CrossRefGoogle Scholar
  63. 63.
    Henderson R, Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32ADSCrossRefGoogle Scholar
  64. 64.
    Hovmöller S, Sjögren A, Farrants G, Sundberg M, Marinder BO (1984) Accurate atomic positions from electron microscopy. Nature 311:238–241ADSCrossRefGoogle Scholar
  65. 65.
    Nicolopoulos S, Gonzalez-Calbet JM, Vallet-Regi M, Corma A, Corell C, Guil JM, Perez-Pariente J (1995) Direct phasing in electron crystallography: Ab initio determination of a new MCM-22 zeolite structure. J Am Chem Soc 117:8947–8956CrossRefGoogle Scholar
  66. 66.
    Wagner P, Terasaki O, Ritsch S, Nery JG, Zones SI, Davis ME, Hiraga K (1999) Electron diffraction structure solution of a nanocrystalline zeolite at atomic resolution. J Phys Chem B103:8245–8250Google Scholar
  67. 67.
    Fan HF (1993) Modern crystallography proceedings of the seventh Chinese International Summer School of Physics. Chinese Academy of Science, Beijing, pp 1–10Google Scholar
  68. 68.
    Gilmore CJ (1996) Maximum entropy and Bayesian statistics in crystallography: a review of practical applications. Acta Crystallogr A52:561–589Google Scholar
  69. 69.
    Mugnaioli E, Gorelik T, Kolb U (2009) “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109:758–765CrossRefGoogle Scholar
  70. 70.
    Morniroli JP, Houdellier F, Roucau C, Puiggali J, Gesti S, Redjaimia A (2008) LACDIF, a new electron diffraction technique obtained with the LACBED configuration and a Cs corrector: comparison with electron precession. Ultramicroscopy 108:100–115CrossRefGoogle Scholar
  71. 71.
    Koch CT (2011) Aberration-compensated large-angle rocking-beam electron diffraction. Ultramicroscopy 111:828–840CrossRefGoogle Scholar
  72. 72.
    Howie A, Whelan MJ (1961) Diffraction contrast of electron microscope images of crystal lattice defects. II. The development of a dynamical theory. Proc R Soc A 263:217–237ADSCrossRefGoogle Scholar
  73. 73.
    Howie A, Whelan MJ (1962) Diffraction contrast of electron microscope images of crystal lattice defects. III. Results and experimental confirmation of the dynamical theory of dislocation image contrast. Proc R Soc A 267:206–230ADSCrossRefGoogle Scholar
  74. 74.
    Hytch MJ, Stobbs WM (1994) Quantitative comparison of high resolution TEM images with image simulations. Ultramicroscopy 53:191–203CrossRefGoogle Scholar
  75. 75.
    LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2008) Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100:206101ADSCrossRefGoogle Scholar
  76. 76.
    Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long range orientational order and no translation symmetry. Phys Rev Lett 53:1951–1953ADSCrossRefGoogle Scholar
  77. 77.
    International Union of Crystallography (1992) Report of the executive committee for 1991. Acta Crystallogr A48:922–946Google Scholar
  78. 78.
    Schattschneider P, Rubino S, Hübert C, Rusz J, Kunes J, Novak P, Carlino E, Fabrizioli M, Panaccione G, Rossi G (2006) Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441:486–488ADSCrossRefGoogle Scholar
  79. 79.
    Dunin-Borkowski R, Kasama T, Wei A, Tripp SL, Hytch MJ, Snoeck E, Harrison RJ, Putnis A (2004) Off-axis electron holography of magnetic nanowires and chains, rings, and planar arrays of magnetic nanoparticles. Microsc Res Tech 64:390–402CrossRefGoogle Scholar
  80. 80.
    Hÿtch MJ, Houdellier F, Hüe F, Snoeck E (2011) Dark-field electron holography for the measurement of geometric phase. Ultramicroscopy 111:1328–1337CrossRefGoogle Scholar
  81. 81.
    Hÿtch MJ, Houdellier F, Hüe F, Snoeck E (2008) Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453:1086–1089ADSCrossRefGoogle Scholar
  82. 82.
    Kolb U, Matveeva GN (2003) Electron crystallography on polymorphic organics. Z Kristallogr 218:259–268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of Physical ChemistryJohannes-Gutenberg University MainzMainzGermany

Personalised recommendations