Pair Distribution Function Technique: Principles and Methods

  • Simon J. L. Billinge
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


One of the frontiers when studying complex and nanostructured materials is the characterization of structure on the nanoscale. We describe how the atomic pair distribution function analysis of powder diffraction data can be used to this end, and what kind of structural information can be obtained in different situations.


Pair Distribution Function Total Scattering Structural Coherence Spallation Neutron Source Average Number Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work in the Billinge group is supported by the US-Department of Energy, Office of Science, through grant DE-AC02-98CH10886 and by the US National Science Foundation through grant DMR-0703940.


  1. 1.
    Dinnebier RE, Billinge SJL (2008) Powder diffraction: theory and practice. The Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  2. 2.
    Billinge SJL, Levin I (2007) The problem with determining atomic structure at the nanoscale. Science 316:561–565ADSCrossRefGoogle Scholar
  3. 3.
    Egami T, Billinge SJL (2003) Underneath the Bragg peaks: structural analysis of complex materials. Pergamon Press/Elsevier, OxfordGoogle Scholar
  4. 4.
    Masadeh AS, Bozin ES, Farrow CL, Paglia G, Juhás P, Karkamkar A, Kanatzidis MG, Billinge SJL (2007) Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis. Phys Rev B 76:115413ADSCrossRefGoogle Scholar
  5. 5.
    Soper AK (1996) Empirical potential Monte Carlo simulation of fluid structure. Chem Phys 202:295–306ADSCrossRefGoogle Scholar
  6. 6.
    Billinge SJL, Kanatzidis MG (2004) Beyond crystallography: the study of disorder nanocrystallinity and crystallographically challenged materials. Chem Commun 2004:749–760CrossRefGoogle Scholar
  7. 7.
    Proffen T, Billinge SJL, Egami T, Louca D (2003) Structural analysis of complex materials using the atomic pair distribution function – a practical guide. Z Kristallogr 218:132–143CrossRefGoogle Scholar
  8. 8.
    Warren BE (1999) X-ray diffraction. Dover, New YorkGoogle Scholar
  9. 9.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
  10. 10.
    Levashov VA, Billinge SJL, Thorpe MF (2005) Density fluctuations and the pair distribution function. Phys Rev B 72:024111ADSCrossRefGoogle Scholar
  11. 11.
    Chupas PJ, Xiangyun Qiu, Hanson JC, Lee PL, Grey CP, Billinge SJL (2003) Rapid acquisition pair distribution function analysis (RA-PDF). J Appl Crystallogr 36:1342–1347CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Information can be found at the ISIS disordered materials group website:
  14. 14.
  15. 15.
    Xiangyun Qiu, Thompson JW, Billinge SJL (2004) PDFgetX2: a GUI driven program to obtain the pair distribution function from X-ray powder diffraction data. J Appl Crystallogr 37:678CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Wyckoff RWG (1967) Crystal structures, vol 1, 2nd edn. Wiley, New YorkGoogle Scholar
  18. 18.
    Price DL, Saboungi ML (1998) Anomalous X-ray scattering from disordered materials. In: Billinge SJL, Thorpe MF (eds) Local structure from diffraction. Plenum, New YorkGoogle Scholar
  19. 19.
    Farrow CL, Juhás P, Jiwu Liu, Bryndin D, Bozin ES, Bloch J, Proffen T, Billinge SJL (2007) PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J Phys Condens Mat 19:335219CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Young RA (1993) The Rietveld method, vol 5 of international union of crystallography monographs on crystallography. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA
  2. 2.Condensed Matter Physics and Materials Science DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations