Information on Imperfections

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Line Profile Analysis is the common name given to those methods allowing microstructure information to be extracted from the breadth and shape of the peaks in a diffraction pattern. A fast analysis is always possible via traditional techniques such as the Scherrer formula, Williamson-Hall plot and Warren-Averbach method, but at the expenses of the physical meaning of the result. A more sound alternative is offered by the Whole Powder Pattern Modelling, allowing physical information to be extracted from diffraction data in a self-consistent way.

Keywords

Average Crystallite Size Reciprocal Space Scherrer Formula Integral Breadth Spherical Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author wishes to thank Prof. P. Scardi for continuous support, critical reading and useful discussions. The PM2K software implementing the WPPM method and the DIFFaX+ code for the analysis of systems with heavy faulting are both available on request from the author. A free license is granted for academic and non-profit use.

References

  1. 1.
    Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Goettingen Math-Phys Kl:98–100Google Scholar
  2. 2.
    Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRefGoogle Scholar
  3. 3.
    Warren BE, Averbach BL (1950) The effect of cold-work distortion on X-ray patterns. J Appl Phys 21:595–600ADSCrossRefGoogle Scholar
  4. 4.
    Warren BE, Averbach BL (1952) The separation cold-work distortion and particle size broadening in X-ray patterns. J Appl Phys 23:497–512ADSCrossRefGoogle Scholar
  5. 5.
    Warren BE (1969) X-ray diffraction. Addison-Wesley, ReadingGoogle Scholar
  6. 6.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous material. Wiley, New YorkGoogle Scholar
  7. 7.
    Langford JI, Louër D (1996) Powder diffraction. Rep Prog Phys 59:131–234ADSCrossRefGoogle Scholar
  8. 8.
    Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113CrossRefGoogle Scholar
  9. 9.
    Scardi P, Leoni M, Dong YH (2000) Whole diffraction pattern-fitting of polycrystalline fcc materials based on microstructure. Eur Phys J B 18:23–30ADSCrossRefGoogle Scholar
  10. 10.
    Scardi P, Leoni M (2004) Whole powder pattern modelling: theory and application. In: Mittemeijer EJ, Scardi P (eds) Diffraction analysis of the microstructure of materials. Springer, Berlin, pp 51–91Google Scholar
  11. 11.
    Scardi P, Leoni M (2002) Whole powder pattern modelling. Acta Crystallogr A 58:190–200CrossRefGoogle Scholar
  12. 12.
    Snyder RL, Fiala J, Bunge HJ (eds) (1999) Microstructure analysis from diffraction. Oxford University Press, OxfordGoogle Scholar
  13. 13.
    Mittemeijer EJ, Scardi P (eds) (2004) Diffraction analysis of the microstructure of materials. Springer, BerlinGoogle Scholar
  14. 14.
    Guagliardi A, Masciocchi N (2010) Diffraction at the nanoscale. Nanocrystals, defective & amorphous materials. Insubria University Press, ComoGoogle Scholar
  15. 15.
    Scardi P, Dinnebier R (eds) (2010) Extending the reach of powder diffraction modelling. Trans Tech Publications Ltd., ZurichGoogle Scholar
  16. 16.
    Bertaut EF (1949) X-ray study of the distribution of crystallite dimensions in a crystalline powder [in French]. CR Acad Sci Paris 228:492–494Google Scholar
  17. 17.
    Bertaut EF (1950) Raies de Debye-Scherreretrépartition des dimensions des domaines de Bragg dans les poudrespolycristallines. Acta Crystallogr 3:14–18CrossRefGoogle Scholar
  18. 18.
    Scardi P, Leoni M, Delhez R (2004) Line-broadening analysis using integral breadth methods: a critical review. J Appl Crystallogr 37:381–390CrossRefGoogle Scholar
  19. 19.
    Balzar D (1999) Voigt-function model in diffraction line-broadening analysis. In: Snyder RL, Fiala J, Bunge HJ (eds) Microstructure analysis from diffraction. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Scardi P, Leoni M (2001) Diffraction line profiles from polydisperse crystalline systems. Acta Crystallogr A 57:604–613CrossRefGoogle Scholar
  21. 21.
    Ungár T, Gubicza J, Ribárik G, Borbély A (2001) A crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J Appl Crystallogr 34:298–310CrossRefGoogle Scholar
  22. 22.
    Ribárik G (2008) Modeling of diffraction patterns properties. PhD thesis, Eötvös University, BudapestGoogle Scholar
  23. 23.
    Scardi P, Dong YH, Leoni M (2001) Line profile analysis in the Rietveld method and whole-powder-pattern fitting. Mater Sci Forum 378–381:132–141CrossRefGoogle Scholar
  24. 24.
    Scardi P (2002) Profile modelling versus profile fitting in powder diffraction. Z Kristallogr 217:420–421CrossRefGoogle Scholar
  25. 25.
    Scardi P, Leoni M (2006) Line profile analysis: pattern modelling versus profile fitting. J Appl Crystallogr 39:24–31CrossRefGoogle Scholar
  26. 26.
    Leoni M, Scardi P (2004) Surface relaxation effects in nanocrystalline powders. In: Mittemeijer EJ, Scardi P, Mittemeijer EJ, Scardi P (eds) Diffraction analysis of the microstructure of materials. Springer, Berlin, pp 413–454Google Scholar
  27. 27.
    Leoni M (2004) Grain surface relaxation and grain interaction in powder diffraction. Mater Sci Forum 1–10:443–444Google Scholar
  28. 28.
    Scardi P, Leoni M (2005) Diffraction whole-pattern modelling for the study of anti-phase domains in Cu3Au. Acta Mater 53:5229–5239CrossRefGoogle Scholar
  29. 29.
    Leoni M, Scardi P (2004) Nanocrystalline domain size distributions from powder diffraction data. J Appl Crystallogr 37:629–634CrossRefGoogle Scholar
  30. 30.
    Armstrong N, Leoni M, Scardi P (2006) Some considerations concerning Wilkens’ theory of dislocation line-broadening. Z Kristallogr Suppl 23:81–86CrossRefGoogle Scholar
  31. 31.
    Leoni M, Confente T, Scardi P (2006) PM2K: a flexible program implementing whole powder pattern modelling. Z Kristallogr Suppl 23:249–254CrossRefGoogle Scholar
  32. 32.
    Scardi P, Leoni M, Faber J (2006) Diffraction line profile from a disperse system: a simple alternative to Voigtian profiles. Powder Diffr 21:270–277ADSCrossRefGoogle Scholar
  33. 33.
    Leoni M, Martinez-Garcia J, Scardi P (2007) Dislocation effects in powder diffraction. J Appl Crystallogr 40:719–724CrossRefGoogle Scholar
  34. 34.
    Estevez-Rams E, Leoni M, Scardi P, Aragon-Fernandez B, Fuess H (2003) On the powder diffraction pattern of crystals with stacking faults. Phil Mag 83(36):4045–4057ADSCrossRefGoogle Scholar
  35. 35.
    Martinez-Garcia J, Leoni M, Scardi P (2009) A general approach for determining the diffraction contrast factor of straight-line dislocations. Acta Crystallogr A 65:109–119ADSCrossRefGoogle Scholar
  36. 36.
    Leoni M, Di Maggio R, Polizzi S, Scardi P (2004) An X-ray diffraction methodology for the microstructural analysis of nanocrystalline powders: application to cerium oxide. J Am Ceram Soc 87:1133–1140CrossRefGoogle Scholar
  37. 37.
    Scardi P (2005) Microstructure and lattice defects in highly deformed metals by X-ray diffraction whole powder pattern modelling. Z Metall 9:698–702Google Scholar
  38. 38.
    De Giudici G, Biddau R, D’Incau M, Leoni M, Scardi P (2005) Reactivity of nanocrystalline fluorite powders: defect density threshold. Geochimicaet Cosmochimica Acta 69(16):4073–4083ADSCrossRefGoogle Scholar
  39. 39.
    Scardi P, Leoni M, Lamas DG, Cabanillas ED (2005) Grain size distribution of nanocrystalline systems. Powder Diffr 20(4):353–358ADSCrossRefGoogle Scholar
  40. 40.
    Leoni M, De Giudici G, Biddau R, D’Incau M, Scardi P (2006) Analysis of polydisperse ball-milled fluorite powders using a full pattern technique. Z Kristallogr Suppl 23:111–116CrossRefGoogle Scholar
  41. 41.
    Scardi P, Leoni M, D’Incau M (2007) Whole powder pattern modelling of cubic metal powders deformed by high energy milling. Z Kristallogr 222:129–135CrossRefGoogle Scholar
  42. 42.
    Scardi P, Leoni M, Straffelini G, GiudiciG D (2007) Microstructure of Cu-Be alloy triboxidative wear debris. Acta Mater 55:2531–2538CrossRefGoogle Scholar
  43. 43.
    Scardi P, D’Incau M, Leoni M (2007) Full pattern methods for the analysis of plastically deformed materials. Solid State Phenom 130:27–32CrossRefGoogle Scholar
  44. 44.
    D’Incau M, Leoni M, Scardi P (2007) High energy grinding of FeMo powders. J Mater Res 22:1744–1753ADSCrossRefGoogle Scholar
  45. 45.
    Pesenti H, Leoni M, Scardi P (2008) XRD line profile analysis of calcite powders produced by 318 high energy milling. Z Kristallogr Suppl 27:143–150CrossRefGoogle Scholar
  46. 46.
    Ungár T (2004) Microstructure parameters from X-ray diffraction peak broadening. Scripta Mater 51:777–781CrossRefGoogle Scholar
  47. 47.
    Ribárik G, Gubicza J, Ungár T (2004) Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction. Mater Sci Eng A 387–389:343–347Google Scholar
  48. 48.
    Balogh L, Ribárik G, Ungár T (2006) Stacking faults and twin boundaries in fcc crystals determined by X-ray diffraction profile analysis. J Appl Phys 100:023512ADSCrossRefGoogle Scholar
  49. 49.
    Pawley GS (1981) Unit-cell refinement from powder diffraction scans. J Appl Crystallogr 14:357–361CrossRefGoogle Scholar
  50. 50.
    Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152CrossRefGoogle Scholar
  51. 51.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  52. 52.
    Young RA (ed) (1993) The Rietveld method. Oxford University Press, OxfordGoogle Scholar
  53. 53.
    Leineweber A, Mittemeijer EJ (2004) Diffraction line broadening due to lattice-parameter variations caused by a spatially varying scalar variable: its orientation dependence caused by locally varying nitrogen content in \( \varepsilon \)-FeN0.433. J Appl Crystallogr 37:123–135CrossRefGoogle Scholar
  54. 54.
    van Berkum JGM (1994) Strain fields in crystalline materials. PhD thesis, Technische Universiteit Delft, Delft, The NetherlandsGoogle Scholar
  55. 55.
    Leoni M, Gualtieri A, Roveri N (2004) Simultaneous refinement of structure and microstructure of layered materials. J Appl Crystallogr 37:166–173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Materials Engineering and Industrial TechnologiesUniversity of TrentoTrentoItaly

Personalised recommendations