Proteins and Powders: An Overview

  • Irene Margiolaki
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Following the seminal work of Von Dreele, powder X-ray diffraction studies on proteins are being established as a valuable complementary technique to single crystal measurements. A wide range of small proteins have been found to give synchrotron powder diffraction profiles where the peak widths are essentially limited only by the instrumental resolution. The rich information contained in these profiles, combined with developments in data analysis, has stimulated research and development to apply the powder technique to microcrystalline protein samples. In this chapter, progress in using powder diffraction for macromolecular crystallography is reported.


Powder Diffraction Data Molecular Replacement Purple Membrane Powder Data Macro Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Dr. A.N. Fitch & Dr. J.P. Wright for their continuous input, advice and support during this project. I would like to thank six undergraduate students from the University of Bath who have worked with us 1 year each: S. Basso, L. Knight, S. Dagogo, M. Jenner, I. Collings, L. Saunders as well as our PhD student, Y. Watier. Many thanks to my three M.Sc. students at the department of biology of the University of Patras (UPAT): Miss Evdokia-Anastasia Giannopoulou, Foteini Karavasili & Eleni Kotsiliti. Special thanks go to Drs. R.B. Von Dreele, M. Norrman, G. Schluckebier, M. El Hajji, F. Bonnete, M. Giffard, N. Papageorgiou, B. Canard, B. Coutard, M. Wilmanns and N. Pinotsis, and also Dr. M. Schiltz and his group, for the provision of interesting samples, their help and collaboration. I am grateful to the UNESCO and L’OREAL foundations for the international fellowship for women in science (2010). Finally, we thank the ESRF for provision of synchrotron beam time and UPAT for provision of facilities and financial resources.


  1. 1.
    Margiolaki I et al (2007) Second SH3 domain of ponsin solved from powder diffraction. J Am Chem Soc 129:11865–11871CrossRefGoogle Scholar
  2. 2.
    Von Dreele RB (2007) Multipattern Rietveld refinement of protein powder data: an approach to higher resolution. J Appl Crystallogr 40:133–143CrossRefGoogle Scholar
  3. 3.
    Rossmann MG (1990) The molecular replacement method. Acta Crystallogr A46:73–82Google Scholar
  4. 4.
    Stevens RC et al (2001) Global efforts in structural genomics. Science 294:89–92ADSCrossRefGoogle Scholar
  5. 5.
    Von Dreele RB (2000) The first protein crystal structure determined from high-resolution X-ray powder diffraction data: a variant of T3R3 human insulin-zinc complex produced by grinding. Acta Crystallogr D56:1549–1553Google Scholar
  6. 6.
    Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025CrossRefGoogle Scholar
  7. 7.
    Wright JP (2004) Extraction and use of correlated integrated intensities with powder diffraction data. Z Kristallogr 219:791–802CrossRefGoogle Scholar
  8. 8.
    Margiolaki I et al (2005) Synchrotron X-ray powder diffraction study of Turkey egg-white Lysozyme. Acta Crystallogr D61:423–432Google Scholar
  9. 9.
    Basso S et al (2005) High throughput phase diagram mapping via powder diffraction: a case-study of HEWL versus pH. Acta Crystallogr D61:1612–1625Google Scholar
  10. 10.
    Oka T et al (2006) High-resolution powder diffraction study of purple membrane with a large Guinier-type camera. J Synchrotron Radiat 13:281–284CrossRefGoogle Scholar
  11. 11.
    Anderson CR et al (1957) Mayaro virus: a new human disease agent II. Isolation from blood of patients in Trinidad. Am J Trop Med Hyg 6:1012–1016Google Scholar
  12. 12.
    Causey OR, Maroja OM (1957) Mayaro virus: a new human disease agent. III. Investigation of an epidemic of acute febrile illness on the river Guama in Pará, Brazil, and isolation of Mayaro virus as causative agent. Am J Trop Med Hyg 6:1017Google Scholar
  13. 13.
    Malet H et al (2009) The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. J Virol 83:6534CrossRefGoogle Scholar
  14. 14.
    Papageorgiou N et al (2010) Preliminary insights into the non structural protein 3 macro domain of the Mayaro virus by powder diffraction. Z Kristallogr 225:576CrossRefGoogle Scholar
  15. 15.
    Perutz MF (1956) Isomorphous replacement and phase determination in non-centrosymmetric space groups. Acta Crystallogr 9:867–873CrossRefGoogle Scholar
  16. 16.
    Green DW et al (1954) The structure of Hemoglobin. IV. Sign determination by the isomorphus replacement method. Proc R Soc Lond Ser A 225:287Google Scholar
  17. 17.
    Wright JP et al (2007) Likelihood methods with protein powder diffraction data. J Appl Crystallogr 41:329–339CrossRefGoogle Scholar
  18. 18.
    Uson I, Sheldrick GM (1999) Advances in direct methods for protein crystallography. Curr Opin Struct Biol 9:643–648CrossRefGoogle Scholar
  19. 19.
    La Fortelle E, Bricogne G (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 276:472–494 316Google Scholar
  20. 20.
    Besnard C et al (2007) Exploiting X-ray induced anisotropic lattice changes to improve intensity extraction in protein powder diffraction: application to heavy atom detection. Z Kristallogr Suppl 26:39–44CrossRefGoogle Scholar
  21. 21.
    Basso S et al (2010) Features of the secondary structure of the protein molecule from powder diffraction data. Acta Crystallogr D66:756–761Google Scholar
  22. 22.
    Von Dreele RB (1999) Combined Rietveld and stereochemical restraint refinement of a protein crystal structure. J Appl Crystallogr 32:1084–1089CrossRefGoogle Scholar
  23. 23.
    Larson AC, Von Dreele RB (2004) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, Los Alamos, USA, pp 86–748Google Scholar
  24. 24.
    Ramachandran GN et al (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99CrossRefGoogle Scholar
  25. 25.
    Smith GD et al (2001) The structure of T6 bovine insulin. Acta Crystallogr D57:1091–1100Google Scholar
  26. 26.
    Von Dreele RB (2001) Binding of N-acetylglucosamine to chicken egg lysozyme: a powder diffraction study. Acta Crystallogr D57:1836–1842Google Scholar
  27. 27.
    Von Dreele RB (2005) Binding of N-acetylglucosamine oligosaccharides to hen eggwhite lysozyme: a powder diffraction study. Acta Crystallogr D61:22–32Google Scholar
  28. 28.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  29. 29.
    Wright JP et al (2007) Likelihood methods with protein powder diffraction data. Z Kristallogr 26:27–32CrossRefGoogle Scholar
  30. 30.
    Bhat TN (1988) Calculation of an OMIT map. J Appl Crystallogr 21:279–281MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yang MX et al (2003) Crystalline monoclonal antibodies for subcutaneous delivery. Proc Natl Acad Sci USA 100:6934–6939ADSCrossRefGoogle Scholar
  32. 32.
    Basu S et al (2004) Protein crystals for the delivery of biopharmaceuticals. Expert Opin Biol Ther 4:301–317CrossRefGoogle Scholar
  33. 33.
    Havelund S (2009) US Patent 2009/0010854A9 331Google Scholar
  34. 34.
    Brader ML, Sukumar M (2005) US Patent 2005/0054818A1 332Google Scholar
  35. 35.
    Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796CrossRefGoogle Scholar
  36. 36.
    Aguiar AJ et al (1967) Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate. J Pharm Sci 56:847–853CrossRefGoogle Scholar
  37. 37.
    Bauer J et al (2001) Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 18:859–866CrossRefGoogle Scholar
  38. 38.
    Knight L et al (2007) Protein powder diffraction – pH variation studies of insulin. Acta Crystallogr A63:s243Google Scholar
  39. 39.
    Karavassili F et al (2012) Structural studies of human insulin cocrystallized with phenol or resorcinol via powder diffraction. Acta Crystallogr 68(12):1632–1641Google Scholar
  40. 40.
    Collings I et al (2010) Polymorphism of micro-crystalline Urate Oxidase from Aspergillus flavus. Acta Crystallogr D66:539–548Google Scholar
  41. 41.
    Norrman M, Schluckebier G (2007) Crystallographic characterization of two novel crystal forms of human insulin induced by chaotropic agents and a shift in pH. BMC Struct Biol 7:83CrossRefGoogle Scholar
  42. 42.
    McGrath BM, Walsh G (eds) (2005) Directory of therapeutic enzymes. CRC Press, Boca RatonGoogle Scholar
  43. 43.
    Wu X et al (1992) Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 34:78–84CrossRefGoogle Scholar
  44. 44.
    Retailleau P et al (2004) Complexed and ligand-free high-resolution structures of urate oxidase (Uox) from Aspergillus flavus: a reassignment of the active-site binding mode. Acta Crystallogr D60(3):453–462Google Scholar
  45. 45.
    Retailleau P et al (2005) Urate oxidase from Aspergillus flavus: new crystal-packing contacts in relation to the content of the active site. Acta Crystallogr D61(3):218–229Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Biology, Section of Genetics, Cell Biology and DevelopmentUniversity of PatrasPatrasGreece

Personalised recommendations