Skip to main content

Proteins and Powders: An Overview

  • Conference paper
  • First Online:
Uniting Electron Crystallography and Powder Diffraction

Abstract

Following the seminal work of Von Dreele, powder X-ray diffraction studies on proteins are being established as a valuable complementary technique to single crystal measurements. A wide range of small proteins have been found to give synchrotron powder diffraction profiles where the peak widths are essentially limited only by the instrumental resolution. The rich information contained in these profiles, combined with developments in data analysis, has stimulated research and development to apply the powder technique to microcrystalline protein samples. In this chapter, progress in using powder diffraction for macromolecular crystallography is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margiolaki I et al (2007) Second SH3 domain of ponsin solved from powder diffraction. J Am Chem Soc 129:11865–11871

    Article  Google Scholar 

  2. Von Dreele RB (2007) Multipattern Rietveld refinement of protein powder data: an approach to higher resolution. J Appl Crystallogr 40:133–143

    Article  Google Scholar 

  3. Rossmann MG (1990) The molecular replacement method. Acta Crystallogr A46:73–82

    Google Scholar 

  4. Stevens RC et al (2001) Global efforts in structural genomics. Science 294:89–92

    Article  ADS  Google Scholar 

  5. Von Dreele RB (2000) The first protein crystal structure determined from high-resolution X-ray powder diffraction data: a variant of T3R3 human insulin-zinc complex produced by grinding. Acta Crystallogr D56:1549–1553

    Google Scholar 

  6. Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025

    Article  Google Scholar 

  7. Wright JP (2004) Extraction and use of correlated integrated intensities with powder diffraction data. Z Kristallogr 219:791–802

    Article  Google Scholar 

  8. Margiolaki I et al (2005) Synchrotron X-ray powder diffraction study of Turkey egg-white Lysozyme. Acta Crystallogr D61:423–432

    Google Scholar 

  9. Basso S et al (2005) High throughput phase diagram mapping via powder diffraction: a case-study of HEWL versus pH. Acta Crystallogr D61:1612–1625

    Google Scholar 

  10. Oka T et al (2006) High-resolution powder diffraction study of purple membrane with a large Guinier-type camera. J Synchrotron Radiat 13:281–284

    Article  Google Scholar 

  11. Anderson CR et al (1957) Mayaro virus: a new human disease agent II. Isolation from blood of patients in Trinidad. Am J Trop Med Hyg 6:1012–1016

    Google Scholar 

  12. Causey OR, Maroja OM (1957) Mayaro virus: a new human disease agent. III. Investigation of an epidemic of acute febrile illness on the river Guama in Pará, Brazil, and isolation of Mayaro virus as causative agent. Am J Trop Med Hyg 6:1017

    Google Scholar 

  13. Malet H et al (2009) The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. J Virol 83:6534

    Article  Google Scholar 

  14. Papageorgiou N et al (2010) Preliminary insights into the non structural protein 3 macro domain of the Mayaro virus by powder diffraction. Z Kristallogr 225:576

    Article  Google Scholar 

  15. Perutz MF (1956) Isomorphous replacement and phase determination in non-centrosymmetric space groups. Acta Crystallogr 9:867–873

    Article  Google Scholar 

  16. Green DW et al (1954) The structure of Hemoglobin. IV. Sign determination by the isomorphus replacement method. Proc R Soc Lond Ser A 225:287

    Google Scholar 

  17. Wright JP et al (2007) Likelihood methods with protein powder diffraction data. J Appl Crystallogr 41:329–339

    Article  Google Scholar 

  18. Uson I, Sheldrick GM (1999) Advances in direct methods for protein crystallography. Curr Opin Struct Biol 9:643–648

    Article  Google Scholar 

  19. La Fortelle E, Bricogne G (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 276:472–494 316

    Google Scholar 

  20. Besnard C et al (2007) Exploiting X-ray induced anisotropic lattice changes to improve intensity extraction in protein powder diffraction: application to heavy atom detection. Z Kristallogr Suppl 26:39–44

    Article  Google Scholar 

  21. Basso S et al (2010) Features of the secondary structure of the protein molecule from powder diffraction data. Acta Crystallogr D66:756–761

    Google Scholar 

  22. Von Dreele RB (1999) Combined Rietveld and stereochemical restraint refinement of a protein crystal structure. J Appl Crystallogr 32:1084–1089

    Article  Google Scholar 

  23. Larson AC, Von Dreele RB (2004) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, Los Alamos, USA, pp 86–748

    Google Scholar 

  24. Ramachandran GN et al (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  Google Scholar 

  25. Smith GD et al (2001) The structure of T6 bovine insulin. Acta Crystallogr D57:1091–1100

    Google Scholar 

  26. Von Dreele RB (2001) Binding of N-acetylglucosamine to chicken egg lysozyme: a powder diffraction study. Acta Crystallogr D57:1836–1842

    Google Scholar 

  27. Von Dreele RB (2005) Binding of N-acetylglucosamine oligosaccharides to hen eggwhite lysozyme: a powder diffraction study. Acta Crystallogr D61:22–32

    Google Scholar 

  28. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  29. Wright JP et al (2007) Likelihood methods with protein powder diffraction data. Z Kristallogr 26:27–32

    Article  Google Scholar 

  30. Bhat TN (1988) Calculation of an OMIT map. J Appl Crystallogr 21:279–281

    Article  MathSciNet  Google Scholar 

  31. Yang MX et al (2003) Crystalline monoclonal antibodies for subcutaneous delivery. Proc Natl Acad Sci USA 100:6934–6939

    Article  ADS  Google Scholar 

  32. Basu S et al (2004) Protein crystals for the delivery of biopharmaceuticals. Expert Opin Biol Ther 4:301–317

    Article  Google Scholar 

  33. Havelund S (2009) US Patent 2009/0010854A9 331

    Google Scholar 

  34. Brader ML, Sukumar M (2005) US Patent 2005/0054818A1 332

    Google Scholar 

  35. Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796

    Article  Google Scholar 

  36. Aguiar AJ et al (1967) Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate. J Pharm Sci 56:847–853

    Article  Google Scholar 

  37. Bauer J et al (2001) Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 18:859–866

    Article  Google Scholar 

  38. Knight L et al (2007) Protein powder diffraction – pH variation studies of insulin. Acta Crystallogr A63:s243

    Google Scholar 

  39. Karavassili F et al (2012) Structural studies of human insulin cocrystallized with phenol or resorcinol via powder diffraction. Acta Crystallogr 68(12):1632–1641

    Google Scholar 

  40. Collings I et al (2010) Polymorphism of micro-crystalline Urate Oxidase from Aspergillus flavus. Acta Crystallogr D66:539–548

    Google Scholar 

  41. Norrman M, Schluckebier G (2007) Crystallographic characterization of two novel crystal forms of human insulin induced by chaotropic agents and a shift in pH. BMC Struct Biol 7:83

    Article  Google Scholar 

  42. McGrath BM, Walsh G (eds) (2005) Directory of therapeutic enzymes. CRC Press, Boca Raton

    Google Scholar 

  43. Wu X et al (1992) Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 34:78–84

    Article  Google Scholar 

  44. Retailleau P et al (2004) Complexed and ligand-free high-resolution structures of urate oxidase (Uox) from Aspergillus flavus: a reassignment of the active-site binding mode. Acta Crystallogr D60(3):453–462

    Google Scholar 

  45. Retailleau P et al (2005) Urate oxidase from Aspergillus flavus: new crystal-packing contacts in relation to the content of the active site. Acta Crystallogr D61(3):218–229

    Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. A.N. Fitch & Dr. J.P. Wright for their continuous input, advice and support during this project. I would like to thank six undergraduate students from the University of Bath who have worked with us 1 year each: S. Basso, L. Knight, S. Dagogo, M. Jenner, I. Collings, L. Saunders as well as our PhD student, Y. Watier. Many thanks to my three M.Sc. students at the department of biology of the University of Patras (UPAT): Miss Evdokia-Anastasia Giannopoulou, Foteini Karavasili & Eleni Kotsiliti. Special thanks go to Drs. R.B. Von Dreele, M. Norrman, G. Schluckebier, M. El Hajji, F. Bonnete, M. Giffard, N. Papageorgiou, B. Canard, B. Coutard, M. Wilmanns and N. Pinotsis, and also Dr. M. Schiltz and his group, for the provision of interesting samples, their help and collaboration. I am grateful to the UNESCO and L’OREAL foundations for the international fellowship for women in science (2010). Finally, we thank the ESRF for provision of synchrotron beam time and UPAT for provision of facilities and financial resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Margiolaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Margiolaki, I. (2012). Proteins and Powders: An Overview. In: Kolb, U., Shankland, K., Meshi, L., Avilov, A., David, W. (eds) Uniting Electron Crystallography and Powder Diffraction. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5580-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5580-2_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5579-6

  • Online ISBN: 978-94-007-5580-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics