Structure Solution by Charge Flipping

  • Lukáš Palatinus
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Charge flipping is an iterative structure solution method based on the alternating modification of an electron density in direct space and structure factors in reciprocal space. It has been successfully applied to a range of crystallographic problems, including structure solution from powder diffraction data and from electron diffraction data obtained by the precession electron diffraction method. For electron diffraction no modification of the basic algorithm is necessary. For the structure solution from powder diffraction the histogram matching technique proved to be a powerful method to improve the quality of the solutions and use the algorithm to solve quite complex structures.


Structure Solution Symmetry Analysis Barium Sulphate Phase Problem Electron Diffraction Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Giacovazzo C, Monaco HL, Artioli G, Viterbo D, Ferraris G, Gilli G, Zanotti G, Catti M (2002) Fundamentals of crystallography, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    DeTitta GT, Weeks CM, Thuman P, Miller R, Hauptman HA (1994) Structure solution by minimal function phase refinement and Fourier filtering: theoretical basis. Acta Crystallogr A 50:203–210CrossRefGoogle Scholar
  3. 3.
    Weeks CM, DeTitta GT, Hauptman HA, Thuman P, Miller R (1994) Structure solution by minimal function phase refinement and Fourier filtering: II. Implementation and applications. Acta Crystallogr A 50:210–220CrossRefGoogle Scholar
  4. 4.
    Combettes P (1997) Hilbertian convex feasibility problem: convergence of projection methods. Appl Math Optim 35:311–330MathSciNetzbMATHGoogle Scholar
  5. 5.
    Thibault P (2007) Algorithmic methods in diffraction microscopy. Dissertation, Cornell UniversityGoogle Scholar
  6. 6.
    Oszlányi G, Sütő A (2004) Ab initio structure solution by charge flipping. Acta Crystallogr A60:134–141ADSGoogle Scholar
  7. 7.
    Oszlányi G, Sütő A (2005) Ab initio structure solution by charge flipping. II. Use of weak reflections. Acta Crystallogr A61:147–152ADSGoogle Scholar
  8. 8.
    Oszlányi G, Sütő A (2008) The charge flipping algorithm. Acta Crystallogr A63:156–163Google Scholar
  9. 9.
    Oszlányi G, Sütő A (2007) Ab initio neutron crystallography by the charge flipping method. Acta Crystallogr A 63:156–163ADSCrossRefGoogle Scholar
  10. 10.
    Palatinus L, van der Lee A (2008) Symmetry determination following structure solution in P1. J Appl Crystallogr 41:975–984CrossRefGoogle Scholar
  11. 11.
    Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452CrossRefGoogle Scholar
  12. 12.
    Pawley GS (1981) Unit-cell refinement from powder diffraction scans. J Appl Crystallogr 14:357–361CrossRefGoogle Scholar
  13. 13.
    Baerlocher C, McCusker L, Palatinus L (2007) Charge flipping combined with histogram matching to solve complex crystal structures from powder diffraction data. Z Kristalogr 222:47–53CrossRefGoogle Scholar
  14. 14.
    Le Bail A, Cranswick L (2009) Third structure determination by powder diffractometry round robin (SDPDRR-3). Powder Diffr 24:254–262ADSCrossRefGoogle Scholar
  15. 15.
    Wu JS, Leinweber K, Spence JCH, O’Keefe M (2006) Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat Mater 5:647–652ADSCrossRefGoogle Scholar
  16. 16.
    Zhang KYJ, Main P (1990) Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr A 46:41–46CrossRefGoogle Scholar
  17. 17.
    Baerlocher C, Gramm F, Massuger L, McCusker LB, He ZB, Hovmoller S, Zou XD (2007) Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315:1113–1116ADSCrossRefGoogle Scholar
  18. 18.
    Baerlocher C, Xie D, McCusker LB, Hwang SJ, Chan IY, Ong K, Burton AW, Zones SI (2008) Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nat Mater 7:631–635ADSCrossRefGoogle Scholar
  19. 19.
    Kolb U, Gorelik T, Kuebel C, Otten MT, Hubert D (2007) Towards automated diffraction tomography: part I – data acquisition. Ultramicroscopy 107:507–513CrossRefGoogle Scholar
  20. 20.
    Zhang D, Oleynikov P, Hovmoller S, Zou X (2010) Collecting 3D electron diffraction data by the rotation method. Z Krist 225:94–102CrossRefGoogle Scholar
  21. 21.
    Mugnaioli E, Gorelik T, Kolb U (2009) Ab initio structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109:758–765CrossRefGoogle Scholar
  22. 22.
    Eggeman A, White T, Midgley P (2009) Symmetry-modified charge flipping. Acta Crystallogr A65:120–127ADSGoogle Scholar
  23. 23.
    Palatinus L, Klementová M, Dřínek V, Jarošová M, Petříček V (2011) An incommensurately modulated structure of η’-phase of Cu3+xSi determined by quantitative electron diffraction tomography. Inorg Chem 50(8):3743–3751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of Physics of the AS CRPrague 8Czech Republic

Personalised recommendations