Powder Diffraction: By Decades

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

This introductory chapter reviews the first 100 years of powder diffraction, decade by decade, from the earliest X-ray powder diffraction measurements of the crystal structure of graphite through to the diversity and complexity of twenty-first century powder diffraction. Carbon features as an illustrative example throughout the discussion of these ten decades from graphite and the disorder of carbon black through to lonsdaleite, the elusive hexagonal polymorph of diamond, and C60, the most symmetrical of molecules. Electronics and computing have played a leading role in the development of powder diffraction, particularly over the past 60 years, and the Moore’s Law decade-by-decade rise in computing power is clear in the increasing complexity of powder diffraction experiments and material systems that can be studied. The chapter concludes with a final discussion of decades – the four decades of length-scale from the ångstrom to the micron that not only represent the domain of powder diffraction but are also the distances that will dominate twenty-first century science and technology.

Keywords

Carbon Black Powder Diffraction Nobel Prize Rietveld Method Neutron Powder Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    Friedrich W, Knipping P, von Laue M (1912) Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte der Mathematisch-Physikalischen, Classe der Königlich-Bayerischen Akademie der Wissenschaften zu München, pp 303–322Google Scholar
  3. 3.
    Bragg WH (1912) The specular reflexion of X-rays. Nature 90:410ADSCrossRefGoogle Scholar
  4. 4.
    Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. Proc Camb Phil Soc 17:43MATHGoogle Scholar
  5. 5.
    Bragg WH (1913) The reflection of X-rays by crystals (II). Proc R Soc Lond A 89:246–248; Bragg WL (1913) The structure of some crystals as indicated by their diffraction of X-rays. Proc R Soc Lond A 89:248–277; Bragg WH, Bragg WL (1913) The structure of the diamond. Proc R Soc Lond A 89:277–291Google Scholar
  6. 6.
    von Laue M (1915) Concerning the detection of X-ray interferences, Nobel lecture, http://nobelprize.org/nobel_prizes/physics/laureates/1914/laue-lecture.pdf
  7. 7.
    Debye P (1915) Scattering of X-rays. Ann Physik 46:809–823ADSCrossRefGoogle Scholar
  8. 8.
    Debye P, Scherrer P (1916) Interferenzen an regellos orientierten Teilchen im Rontgenlicht. Physik Z 17:277–282Google Scholar
  9. 9.
  10. 10.
    Hull AW (1917) A new method of X-ray crystal analysis. Phys Rev 10:661–696ADSCrossRefGoogle Scholar
  11. 11.
    Hull AW (1919) A new method of chemical analysis. J Am Chem Soc 41:1168–1175CrossRefGoogle Scholar
  12. 12.
    Hull AW (1921) The X-ray crystal analysis of thirteen common metals. Phys Rev 17:571–588ADSCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Warren BE (1969/1990) X-ray diffraction. Addison-Wesley/Dover, Reading/MineolaGoogle Scholar
  15. 15.
    Warren BE (1934) X-ray powder diffraction study of carbon black. J Chem Phys 2:551–555ADSCrossRefGoogle Scholar
  16. 16.
    Biscoe J, Warren BE (1942) An X-ray study of carbon black. J Appl Phys 13:364–371ADSCrossRefGoogle Scholar
  17. 17.
    Houska CR, Warren BE (1954) X-ray study of the graphitization of carbon black. J Appl Phys 25:1503–1509ADSCrossRefGoogle Scholar
  18. 18.
    Warren BE, Bodenstein P (1966) The shape of two-dimensional carbon black reflections. Acta Crystallogr 20:602–604CrossRefGoogle Scholar
  19. 19.
    Treacy MMJ, Newsam JM, Deem MW (1991) A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc R Soc Lond A 433:499–520. http://www.public.asu.edu/~mtreacy/DIFFaX_manual.pdf
  20. 20.
    Egami T, Billinge SJL (2003) Underneath the Bragg peaks: structural analysis of complex materials. Pergamon Press Elsevier/Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Scardi P, Ortolani M, Leoni M (2010) WPPM: microstructural analysis beyond the Rietveld method. Mater Sci Forum 651:155–171; Leoni M, Martinez-Garcia J, Scardi P (2010) Mater Sci Forum 651:173–186Google Scholar
  22. 22.
    Shull CG (1995) Early development of neutron scattering. Rev Mod Phys 67:753–757ADSCrossRefGoogle Scholar
  23. 23.
    Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152CrossRefGoogle Scholar
  24. 24.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  25. 25.
    Young RA (ed) (1993) The Rietveld method. Oxford University Press/International Union of Crystallography, OxfordGoogle Scholar
  26. 26.
    Malmros G, Thomas JO (1977) Least-squares structure refinement based on profile analysis of powder film intensity data measured on an automatic microdensitometer. J Appl Crystallogr 10:7–11CrossRefGoogle Scholar
  27. 27.
    Khattak CP, Cox DE (1977) Profile analysis of X-ray powder diffractometer data: structural refinement of La0.75Sr0.25CrO3. J Appl Crystallogr 10:405–411CrossRefGoogle Scholar
  28. 28.
    David WIF, Shankland K, McCusker LB, Baerlocher C (eds) (2002) Structure determination from powder diffraction data. Oxford University Press, OxfordGoogle Scholar
  29. 29.
    Pecharsky V, Zavalij P (2008) Fundamentals of powder diffraction and structural characterization of materials. Springer, New YorkGoogle Scholar
  30. 30.
    Kisi EH, Howard CJ (2008) Applications of neutron powder diffraction. Oxford University Press, OxfordCrossRefGoogle Scholar
  31. 31.
    Dinnebier RE, Billinge SJL (eds) (2008) Powder diffraction: theory and practice. RSC Publishing, CambridgeGoogle Scholar
  32. 32.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminster-fullerene. Nature 318:162–163ADSCrossRefGoogle Scholar
  33. 33.
    Krätschmer W, Lowell D, Lamb D, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358ADSCrossRefGoogle Scholar
  34. 34.
    Heiney PA, Fischer JE, McGhie AR, Romanow WJ, Denenstein AM, McCauley JP Jr, Smith AB III, Cox DE (1991) Orientational ordering transition in solid C60. Phys Rev Lett 66:2911–2914ADSCrossRefGoogle Scholar
  35. 35.
    Sachidanandam R, Harris AB (1991) Comment on ‘Orientational ordering transition in solid C60’. Phys Rev Lett 67:1467ADSCrossRefGoogle Scholar
  36. 36.
    David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM (1991) Crystal structure and bonding of ordered C60. Nature 353:147–149ADSCrossRefGoogle Scholar
  37. 37.
    David WIF, Ibberson RM, Matsuo T (1993) High resolution neutron powder diffraction – a case study of the structure of C60. Proc R Soc Lond A Math Phys Eng Sci 442:129–146ADSCrossRefGoogle Scholar
  38. 38.
    David WIF, Ibberson RM (2012) in preparationGoogle Scholar
  39. 39.
    Coelho AA (2011) TOPAS academic; http://wwwtopas-academicnet/

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.ISIS Facility, Science and Technology Facilities CouncilRutherford Appleton LaboratoryDidcotUK
  2. 2.Inorganic Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations