Advertisement

Consistent theoretical model for the description of the neutron-rich fission product yields

  • V. A. Rubchenya
  • J. Äystö
Chapter

Abstract

The consistent model for the description of the independent fission product formation cross-section at light projectile energies up to about 100MeV is described. Pre-compound nucleon emission is described in the framework of the two-component exciton model using the Monte Carlo method, which allows one to incorporate a time duration criterion for the pre-equilibrium stage of the reaction. The decay of the excited compound nuclei, formed after the pre-equilibrium neutron and proton emission, is treated within the time-dependent statistical model with the inclusion of the main dynamical effects of nuclear friction on the fission width and saddle-to-scission descent time. For each member of the compound nucleus ensemble at scission point, the primary fragment isobaric chain yields are calculated using the multimodal approach with the inclusion two superasymmetric fission modes. The charge distribution of the primary fragment isobaric chains was considered as a results of frozen quantal fluctuations of the isovector nuclear matter density at the finite scission neck radius. The calculated fission product formation cross-sections in the neutron, proton, and γ-rays induced fission of the heavy actinides are presented.

Keywords

Compound Nucleus Fragment Mass Giant Dipole Resonance Shell Correction Neutron Multiplicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    J. Äystö, V. Rubchenya, Eur. Phys. J. A 13, 109 (2002).ADSGoogle Scholar
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    D. Habs et al., in Proceedings of the International Workshop on Research with Fission Fragments, edited by T.V. Edigy et al., (World Scientific, Singapore, 1997) p. 18.Google Scholar
  8. 8.
    Final Report of the EURISOL Design Study (2005-2009) Nov. 2009, http://www.eurisol.org/eurisol_design_study_final_report-1156.html.
  9. 9.
    C.D. Bowman et al., Nucl. Instrum. Methods A 320, 336 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    J. Bouchard, in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, 2008, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (EDP Sciences, 2008) DOI: 10.1051/ndata:07718.Google Scholar
  11. 11.
    M. Huhta et al., Phys. Lett. B 405, 230 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    G. Lhersonneau, P. Dendooven, G. Canchel, J. Huikari, P. Jardin, A. Jokinen, V. Kolhinen, C. Lau, L. Lebreton, A.C. Mueller, A. Nieminen, S. Nummela, H. Penttilä, K. Peräjärvi, Z. Radivojevic, V. Rubchenya, M.-G. Saint- Laurent, W.H. Trzaska, D. Vakhtin, J. Vervier, A.C.C. Villari, J.C. Wang, J. Äystö, Eur. Phys. J. A 9, 385 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    U. Hager, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, S. Rahaman, S. Rinta-Antila, A. Saastamoinen, T. Sonoda, J. Äystö, Phys. Rev. C 75, 064302 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    J. Hakala, S. Rahaman, V.-V. Elomaa, T. Eronen, U. Hager,A. Jokinen, A. Kankainen, I. D. Moore, H. Penttilä, S. Rinta-Antila, J. Rissanen, A. Saastamoinen, T. Sonoda, C. Weber, J. Äystö, Phys. Rev. Lett. 101, 052502 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    H. Penttilä, P. Karvonen, T. Eronen1, V.-V. Elomaa, U. Hager, J. Hakala, A. Jokinen, A. Kankainen, I.D. Moore, K. Peräjärvi, S. Rahaman, S. Rinta-Antila, V. Rubchenya, A. Saastamoinen, T. Sonoda, J. Äystö, Eur. Phys. J. A 44, 147 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    V.A. Rubchenya, Phys. Rev. C 75, 054610 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    V.A. Rubchenya, A.V. Kuznetsov, W.W. Trzaska, D.N. Vakhtin, A.A. Alexandrov, J. Äystö, S.V. Khlebnikov, V.G. Lyapin, O.I. Osetrov, Yu.E. Penionzhkevich, Yu.V. Pyatkov, G.P. Tiourin, Phys. Rev. C 58, 1587 (1998).Google Scholar
  18. 18.
    P.P. Jauho, A. Jokinen, M. Leino, J.M. Parmonen, H. Pentill ä, J. Äystö, K. Eskola, V.A. Rubchenya, Phys. Rev. C 49, 2036 (1994).Google Scholar
  19. 19.
    V.A. Rubchenya, J. Äystö, Nucl. Phys. A 701, 127 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    V.A. Rubchenya, W.H. Trzaska, D.N. Vakhtin, J. Äystö, P. Dendooven, S. Hankonen, A. Jokinen, Z. Radivojevich, J.C. Wang, I.D. Alkhazov, A.V. Evsenin, S.V. Khlebnikov, A.V. Kuznetsov, V.G. Lyapin, O.I. Osetrov, G.P. Tiourin, Yu. E. Penionzhkevich, Nucl. Instrum. Methods Phys. Res. A 463, 653 (2001).Google Scholar
  21. 21.
    E. Gadioli, P.E. Hodgson, Pre-equilibrium Nuclear Reaction (Clarendon Press, Oxford, 1992).Google Scholar
  22. 22.
    A.J. Koning, M.C. Duijvestijn, Nucl. Phys. A 744, 15 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    D. Hilscher, H. Rossner, Ann. Phys. (Paris) 17, 471 (1992).ADSGoogle Scholar
  24. 24.
    H.A. Kramers, Physika 7, 284 (1940).ADSzbMATHMathSciNetGoogle Scholar
  25. 25.
    P. Grangé, S. Hassani, H.A. Weidenmüller, A. Gavron, J.R. Nix, A.J. Sierk, Phys. Rev. C 34, 209 (1986).Google Scholar
  26. 26.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966).Google Scholar
  27. 27.
    X. Campi, S. Stringari, Z. Phys. A 309, 239 (1983).Google Scholar
  28. 28.
    V.V. Pashkevich, Nucl. Phys. A 169, 275 (1971).ADSCrossRefGoogle Scholar
  29. 29.
    M. Thoennessen, D.R. Chakrabarty, M.G. Herman, R. Butsch, P. Paul, Phys. Rev. Lett. 59, 2860 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    H. Hofman, J.R. Nix, Phys. Lett. B 122, 117 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    P. Paul, M. Thoennessen, Ann. Rev. Nucl. Part. Sci. 44, 65 (1994).ADSCrossRefGoogle Scholar
  32. 32.
    U. Brosa, S. Grossmann, A. Müller, Phys. Rep. 197, 167 (1990).ADSCrossRefGoogle Scholar
  33. 33.
    I. Tsekhanovich, N. Varapai, V. Rubchenya, D. Rochman, G.S. Simpson, V. Sokolov, I. Al Mahamid, Phys. Rev. C 70, 044610 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    B.L. Tracy, J. Chaumont, R. Klapish, J.M. Nitschke, A.M. Poskanzer, E. Roeckl, C. Thibault, Phys. Rev. C 5, 222 (1972).ADSCrossRefGoogle Scholar
  35. 35.
    J.P. Bocquet, R. Brissot, Nucl. Phys. A 502, 213 (1989).ADSCrossRefGoogle Scholar
  36. 36.
    H. Nifenecker, J. Phys. Lett. (France) 41, L47 (1980).CrossRefGoogle Scholar
  37. 37.
    E.S. Hernandez et al., Nucl. Phys. A 361, 483 (1981).ADSCrossRefGoogle Scholar
  38. 38.
    V.A. Rubchenya, Sov. J. Nucl. Phys. 9, 697 (1969) (Yad. Fiz. 9, 1192 (1969)).Google Scholar
  39. 39.
    B. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976).ADSCrossRefGoogle Scholar
  40. 40.
    V.M. Strutinsky, Nucl. Phys. A 122, 1 (1968).ADSCrossRefGoogle Scholar
  41. 41.
    S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, Comput. Phys. Commun. 46, 379 (1987).ADSCrossRefGoogle Scholar
  42. 42.
    B.F. Gerasimenko, V.A. Rubchenya, At. Energy 56, 893 (1985) (At. Energ. 56, 335 (1985)).Google Scholar
  43. 43.
    M. Thoennessen, D.R. Chakrabarty, M.G. Herman, R. Butsch, P. Paul, Phys. Rev. Lett. 59, 2860 (1987).ADSCrossRefGoogle Scholar
  44. 44.
    A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975).Google Scholar
  45. 45.
    V.A. Rubchenya, W.H. Trzhaska, I.M. Itkis, M.G. Itkis, J. Kliman, G.N. Knyazheva, N.A. Kondratiev, E.M. Kozulin, L. Kruppa, I.V. Pokrovski, V.M. Voskressenski, F. Hanappe, T. Materna, O. Dorvaux, L. Stuttge, G. Chubarian, S.V. Khlebnikov, D.N. Vakhtin, V.G. Lyapin, Nucl. Phys. A 734, 253 (2004).ADSCrossRefGoogle Scholar
  46. 46.
    E.M. Kozulin, J. Äystö, A.A. Bogachev, S. Yamaletdinov, M.G. Itkis, F. Hanappe, O. Dorvaux, S.V. Khlebnikov, J. Kliman, G.N. Knyazheva, L. Krupa, V. Lyapin, M. Mutterer, V.A. Rubchenya, M. Sillanpää, A.M. Stefanini, W.H. Trzaska, E. Vardaci, AIP Conf. Proc. 853, 336 (2006).ADSCrossRefGoogle Scholar
  47. 47.
    H. Penttilä, J. Äystö, V.-V. Elomaa, T. Eronen, D. Gorelov, U. Hager, J. Hakala, A. Jokinen, A. Kankainen, P. Karvonen, T. Kessler, I. Moore, S. Rahaman, S. Rinta- Antila, V. Rubchenya, T. Sonoda, Eur. Phys. J. ST 150, 317 (2007).Google Scholar
  48. 48.

Copyright information

© Società Italiana di Fisica / Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  2. 2.V.G. Khlopin Radium InstituteSt.-PetersburgRussia

Personalised recommendations