Advertisement

JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification

  • T. Eronen
  • V. S. Kolhinen
  • V.-V. Elomaa
  • D. Gorelov
  • U. Hager
  • J. Hakala
  • A. Jokinen
  • A. Kankainen
  • P. Karvonen
  • S. Kopecky
  • I. D. Moore
  • H. Penttilä
  • S. Rahaman
  • S. Rinta-Antila
  • J. Rissanen
  • A. Saastamoinen
  • J. Szerypo
  • C. Weber
  • J. Äystö
Chapter

Abstract

In this article a comprehensive description and performance of the double Penning-trap setup JYFLTRAP will be detailed. The setup is designed for atomic mass measurements of both radioactive and stable ions and additionally serves as a very high-resolution mass separator. The setup is coupled to the IGISOL facility at the accelerator laboratory of the University of Jyväskylä. The trap has been online since 2003 and it was shut down in the summer of 2010 for relocation to the upgraded IGISOL facility. Numerous atomic mass and decay energy measurements have been performed using the time-of-flight ion-cyclotron resonance technique. The trap has also been used in several decay spectroscopy experiments as a high-resolution mass filter.

Keywords

Frequency Ratio Cyclotron Frequency Ring Electrode Dipolar Excitation Arbitrary Waveform Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-J. Kluge, Hyperfine Interact. 196, 295 (2010).CrossRefADSGoogle Scholar
  2. 2.
    K. Blaum, Phys. Rep. 425, 1 (2006).CrossRefADSGoogle Scholar
  3. 3.
    I. Bergström et al., Nucl. Instrum. Methods Phys. Res. A 487, 618 (2002).CrossRefADSGoogle Scholar
  4. 4.
    M. Redshaw, J. McDaniel, E.G. Myers, Phys. Rev. Lett. 100, 093002 (2008).CrossRefADSGoogle Scholar
  5. 5.
    R.S. Van Dyck et al., Phys. Rev. Lett. 92, 220802 (2004).CrossRefGoogle Scholar
  6. 6.
    C. Diehl et al., Hyperfine Interact. 199, 291 (2011).CrossRefADSGoogle Scholar
  7. 7.
    G. Gabrielse, Int. J. Mass Spectrom. 251, 273 (2006).CrossRefADSGoogle Scholar
  8. 8.
    M. Hori et al., Nature 475, 484 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Wang et al., Nucl. Phys. A 746, 651 (2004).CrossRefADSGoogle Scholar
  10. 10.
    M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008).CrossRefADSGoogle Scholar
  11. 11.
    R. Ringle et al., Nucl. Instrum. Methods Phys. Res. A 604, 536 (2009).CrossRefADSGoogle Scholar
  12. 12.
    V.S. Kolhinen et al., Nucl. Instrum. Methods Phys. Res. A 600, 391 (2009).CrossRefADSGoogle Scholar
  13. 13.
    G. Sikler et al., Nucl. Instrum. Methods Phys. Res. B 204, 482 (2003).CrossRefADSGoogle Scholar
  14. 14.
    TITAN Collaboration (J. Dilling), Hyperfine Interact. 196, 219 (2010).Google Scholar
  15. 15.
    J. Ketelaer et al., Nucl. Instrum. Methods Phys. Res. A 594, 162 (2008).CrossRefADSGoogle Scholar
  16. 16.
    V.S. Kolhinen et al., Nucl. Instrum. Methods Phys. Res. A 528, 776 (2004).CrossRefADSGoogle Scholar
  17. 17.
    A. Jokinen et al., Int. J. Mass Spectrom. 251, 204 (2006).CrossRefADSGoogle Scholar
  18. 18.
    M. Smith et al., Phys. Rev. Lett. 101, 202501 (2008).CrossRefADSGoogle Scholar
  19. 19.
    M. Block et al., Nature 463, 785 (2010).CrossRefADSGoogle Scholar
  20. 20.
    J. Äystö, Nucl. Phys. A 693, 477 (2001).CrossRefADSGoogle Scholar
  21. 21.
    H. Penttilä et al., Eur. Phys. J. A 25, 745 (2005).CrossRefGoogle Scholar
  22. 22.
    P. Karvonen et al., Nucl. Instrum. Methods Phys. Res. B 266, 4794 (2008).CrossRefADSGoogle Scholar
  23. 23.
    S. Rahaman et al., Phys. Lett. B 662, 111 (2008).CrossRefADSGoogle Scholar
  24. 24.
    A. Nieminen et al., Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001).CrossRefADSGoogle Scholar
  25. 25.
    L.S. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982).CrossRefADSGoogle Scholar
  26. 26.
    G. Gabrielse, Int. J. Mass Spectrom. 279, 107 (2009).CrossRefADSGoogle Scholar
  27. 27.
    G. Savard et al., Phys. Lett. A 158, 247 (1991).CrossRefADSGoogle Scholar
  28. 28.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).CrossRefADSGoogle Scholar
  29. 29.
    G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980).Google Scholar
  30. 30.
    M. König et al., Int. J. Mass Spectrom. 142, 95 (1995).CrossRefADSGoogle Scholar
  31. 31.
    N.F. Ramsey, Rev. Mod. Phys. 62, 541 (1990).CrossRefADSGoogle Scholar
  32. 32.
    G. Bollen et al., Nucl. Instrum. Methods Phys. Res. B 70, 490 (1992).CrossRefADSGoogle Scholar
  33. 33.
    M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007).CrossRefADSGoogle Scholar
  34. 34.
    S. George et al., Phys. Rev. Lett. 98, 162501 (2007).CrossRefADSGoogle Scholar
  35. 35.
    T. Eronen et al., Nucl. Instrum. Methods Phys. Res. B 266, 4527 (2008).CrossRefADSGoogle Scholar
  36. 36.
    K. Farrar, Nucl. Instrum. Methods Phys. Res. A 485, 780 (2002).CrossRefADSGoogle Scholar
  37. 37.
    G. Gabrielse, L. Haarsma, S. Rolston, Int. J. Mass Spectrom. Ion Process. 88, 319 (1989).CrossRefGoogle Scholar
  38. 38.
    H. Raimbault-Hartmann et al., Nucl. Instrum. Methods Phys. Res. B 126, 378 (1997).CrossRefADSGoogle Scholar
  39. 39.
    M. Eibach et al., Int. J. Mass Spectrom. 303, 27 (2011).CrossRefADSGoogle Scholar
  40. 40.
    K. Peräjärvi et al., Appl. Radiat. Isot. 68, 450 (2010).CrossRefGoogle Scholar
  41. 41.
    T. Eronen et al., Phys. Rev. Lett. 100, 132502 (2008).CrossRefADSGoogle Scholar
  42. 42.
    K. Blaum et al., Nucl. Phys. A 752, 317c (2005).CrossRefADSGoogle Scholar
  43. 43.
    K. Blaum et al., J. Phys. B: At. Mol. Opt. Phys. 36, 921 (2003).CrossRefADSGoogle Scholar
  44. 44.
    S. Rahaman et al., Eur. Phys. J. A 34, 5 (2007).CrossRefADSGoogle Scholar
  45. 45.
    A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003).CrossRefADSGoogle Scholar
  46. 46.
    M. Marie-Jeanne et al., Nucl. Instrum. Methods Phys. Res. A 587, 464 (2008).CrossRefADSGoogle Scholar
  47. 47.
    J. Ketelaer et al., Eur. Phys. J. D 58, 47 (2010).CrossRefADSGoogle Scholar
  48. 48.
    C. Droese et al., Nucl. Instrum. Methods Phys. Res. A 632, 157 (2011).CrossRefADSGoogle Scholar
  49. 49.
    G. Savard et al., Phys. Rev. Lett. 95, 102501 (2005).CrossRefADSGoogle Scholar
  50. 50.
    D. Beck et al., Nucl. Instrum. Methods Phys. Res. A 598, 635 (2009).CrossRefADSGoogle Scholar
  51. 51.
    A. Chaudhuri et al., Eur. Phys. J. D 45, 47 (2007).CrossRefADSGoogle Scholar
  52. 52.
    V.-V. Elomaa et al., Nucl. Instrum. Methods Phys. Res. B 266, 4425 (2008).CrossRefADSGoogle Scholar
  53. 53.
    V.-V. Elomaa et al., Nucl. Instrum. Methods Phys. Res. A 612, 97 (2009).CrossRefADSGoogle Scholar
  54. 54.
    G. Gabrielse, Phys. Rev. Lett. 102, 172501 (2009).CrossRefADSGoogle Scholar
  55. 55.
    J.C. Hardy, I.S. Towner, Phys. Rev. C 79, 055502 (2009).CrossRefADSGoogle Scholar
  56. 56.
    S. Rahaman et al., Phys. Rev. Lett. 103, 042501 (2009).CrossRefADSGoogle Scholar
  57. 57.
    V.S. Kolhinen et al., Phys. Lett. B 684, 17 (2010).CrossRefADSGoogle Scholar
  58. 58.
    T. Eronen et al., Phys. Rev. Lett. 103, 252501 (2009).CrossRefADSGoogle Scholar
  59. 59.
    R. Ringle et al., Phys. Rev. C 75, 055503 (2007).CrossRefADSGoogle Scholar
  60. 60.
    S. Eliseev et al., Phys. Rev. Lett. 106, 052504 (2011).CrossRefADSGoogle Scholar
  61. 61.
    S. Eliseev et al., Phys. Rev. C 84, 012501(R) (2011).Google Scholar
  62. 62.
    J. Hakala et al., Eur. Phys. J. A 47, 1 (2011).CrossRefADSGoogle Scholar
  63. 63.
    S. George et al., Int. J. Mass Spectrom. 264, 110 (2007).CrossRefADSGoogle Scholar
  64. 64.
    T. Eronen, Ph.D. thesis, University of Jyväskylä, 2008.Google Scholar
  65. 65.
    H. Penttilä et al., Eur. Phys. J. A 44, 147 (2010).CrossRefADSGoogle Scholar
  66. 66.
    R.T. Birge, Phys. Rev. 40, 207 (1932).CrossRefzbMATHADSGoogle Scholar
  67. 67.
  68. 68.
    L. Schweikhard, G. Bollen (Editors), Int. J. Mass Spectrom. 251 (2006).Google Scholar
  69. 69.
    R. Wallace, S. Woosley, Astrophys. J. Suppl. Ser. 45, 389 (1981).CrossRefADSGoogle Scholar
  70. 70.
    H. Schatz et al., Phys. Rep. 294, 167 (1998).CrossRefADSGoogle Scholar
  71. 71.
    B.A. Brown et al., Phys. Rev. C 65, 045802 (2002).CrossRefADSGoogle Scholar
  72. 72.
    H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001).CrossRefADSGoogle Scholar
  73. 73.
    O. Naviliat-Cuncic, N. Severijns, Phys. Rev. Lett. 102, 142302 (2009).CrossRefADSGoogle Scholar
  74. 74.
    E.P. Wigner, in Robert A. Welch foundation conference on chemical research, edited by W.O. Millikan, Vol. 1 (Houston, Texas, 1957) p. 67.Google Scholar
  75. 75.
    R.G. Winter, Phys. Rev. 100, 142 (1955).CrossRefADSGoogle Scholar
  76. 76.
    F.T. Avignone, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 481 (2008).CrossRefADSGoogle Scholar
  77. 77.
    T. Eronen et al., Phys. Rev. C 83, 055501 (2011).CrossRefADSGoogle Scholar
  78. 78.
    A. Saastamoinen et al., Phys. Rev. C 80, 044330 (2009).CrossRefADSGoogle Scholar
  79. 79.
    T. Eronen et al., Phys. Rev. Lett. 97, 232501 (2006).CrossRefADSGoogle Scholar
  80. 80.
    T. Eronen et al., Phys. Rev. C 79, 032802 (2009).CrossRefADSGoogle Scholar
  81. 81.
    J. Souin et al., Eur. Phys. J. A 47, 1 (2011).CrossRefADSGoogle Scholar
  82. 82.
    A. Kankainen et al., Phys. Rev. C 82, 052501 (2010).CrossRefADSGoogle Scholar
  83. 83.
    T. Kurtukian Nieto et al., Phys. Rev. C 80, 035502 (2009).CrossRefADSGoogle Scholar
  84. 84.
    A. Kankainen et al., Phys. Rev. C 82, 034311 (2010).CrossRefADSGoogle Scholar
  85. 85.
    J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008).CrossRefADSGoogle Scholar
  86. 86.
    S. Rahaman et al., Eur. Phys. J. A 32, 87 (2007).CrossRefADSGoogle Scholar
  87. 87.
    U. Hager et al., Phys. Rev. Lett. 96, 042504 (2006).CrossRefADSGoogle Scholar
  88. 88.
    A. Kankainen et al., Eur. Phys. J. A 29, 271 (2006).CrossRefADSGoogle Scholar
  89. 89.
    C. Weber et al., Phys. Rev. C 78, 054310 (2008).CrossRefADSGoogle Scholar
  90. 90.
    U. Hager et al., Nucl. Phys. A 793, 20 (2007).CrossRefADSGoogle Scholar
  91. 91.
    U. Hager et al., Phys. Rev. C 75, 064302 (2007).CrossRefADSGoogle Scholar
  92. 92.
    V.-V. Elomaa et al., Eur. Phys. J. A 40, 1 (2009).CrossRefADSGoogle Scholar
  93. 93.
    S. Rahaman et al., Phys. Lett. B 703, 412 (2011).CrossRefADSGoogle Scholar
  94. 94.
    J.S.E. Wieslander et al., Phys. Rev. Lett. 103, 122501 (2009).CrossRefADSGoogle Scholar
  95. 95.
    V.-V. Elomaa et al., Phys. Rev. Lett. 102, 252501 (2009).CrossRefADSGoogle Scholar
  96. 96.
    V.S. Kolhinen et al., Phys. Lett. B 697, 116 (2011).CrossRefADSGoogle Scholar
  97. 97.
    V.S. Kolhinen et al., Phys. Rev. C 82, 022501 (2010).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag 2012

Authors and Affiliations

  • T. Eronen
    • 1
    • 2
  • V. S. Kolhinen
    • 1
  • V.-V. Elomaa
    • 1
    • 3
  • D. Gorelov
    • 1
  • U. Hager
    • 1
    • 4
  • J. Hakala
    • 1
  • A. Jokinen
    • 1
  • A. Kankainen
    • 1
  • P. Karvonen
    • 1
  • S. Kopecky
    • 1
    • 5
  • I. D. Moore
    • 1
  • H. Penttilä
    • 1
  • S. Rahaman
    • 1
    • 6
  • S. Rinta-Antila
    • 1
  • J. Rissanen
    • 1
  • A. Saastamoinen
    • 1
  • J. Szerypo
    • 1
    • 7
  • C. Weber
    • 1
    • 7
  • J. Äystö
    • 1
  1. 1.University of JyväskyläJyväskyläFinland
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany
  3. 3.Turku PET Centre, Accelerator LaboratoryÅbo Akademi UniversityTurkuFinland
  4. 4.Colorado School of MinesGoldenUSA
  5. 5.European Commission - Joint Research CentreInstitute for Reference Materials and MeasurementsGeelBelgium
  6. 6.Los Alamos National LaboratoryLos AlamosUSA
  7. 7.Fakultät für Physik, LMU München and Maier-Leibnitz LaboratoryGarchingGermany

Personalised recommendations