Advertisement

Isomer and decay studies for the rp process at IGISOL

  • A. Kankainen
  • Yu. N. Novikov
  • M. Oinonen
  • L. Batist
  • V.-V. Elomaa
  • T. Eronen
  • J. Hakala
  • A. Jokinen
  • P. Karvonen
  • M. Reponen
  • J. Rissanen
  • A. Saastamoinen
  • G. Vorobjev
  • C. Weber
  • J. Äystö
Chapter

Abstract

This article reviews the decay studies of neutron-deficient nuclei within the mass region A = 56–100 performed at the Ion-Guide Isotope Separator On-Line (IGISOL) facility in the University of Jyväskylä over last 25 years. Development from He-jet measurements to on-line mass spectrometry, and eventually to atomic mass measurements and post-trap spectroscopy at IGISOL, has yielded studies of around 100 neutron-deficient nuclei over the years. The studies form a solid foundation to astrophysical rp-process path modelling. The focus is on isomers studied either via spectroscopy or via Penning-trap mass measurements. The review is complemented with recent results on the ground and isomeric states of 90Tc. The excitation energy of the low-spin isomer in 90Tc has been measured as E x = 144.1(17) keV with JYFLTRAP double Penning trap and the ground state of 90Tc has been confirmed to be the (8+) state with a half-life of T 1/2 = 49.2(4) s. Finally, the mass-excess results for the spin-gap isomers 53Com and 95Pdm and implications from the JYFLTRAP mass measurements for the (21+) isomer in 94Ag are discussed.

Keywords

Beta Decay Isomeric State Decay Study Mirror Nucleus Thick Plastic Scintillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Honkanen, Ph.D. thesis, Department of Physics, University of Jyväskylä (1981).Google Scholar
  2. 2.
    J. Honkanen et al., Phys. Scr. 19, 239 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    J. Honkanen et al., Nucl. Phys. A 330, 429 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    K. Eskola et al., Nucl. Phys. A 341, 365 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    J. Honkanen et al., Nucl. Phys. A 380, 410 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    J. Honkanen et al., Nucl. Phys. A 471, 489 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    J. Honkanen, M. Kortelahti, K. Eskola, K. Vierinen, Nucl. Phys. A 366, 109 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    J. Ärje et al., Phys. Rev. Lett. 54, 99 (1985).Google Scholar
  9. 9.
    J. Äystö et al., Phys. Lett. B 138, 369 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    M. Oinonen et al., Nucl. Instrum. Methods Phys. Res. A 416, 485 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    J. Huikari et al., Nucl. Instrum. Methods Phys. Res. B 222, 632 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    H. Schatz, K. Rehm, Nucl. Phys. A 777, 601 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    V.-V. Elomaa et al., Phys. Rev. Lett. 102, 252501 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    A. Kankainen et al., Phys. Rev. C 82, 034311 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    A. Kankainen, A. Honkanen, K. Peräjärvi, A. Saastamoinen, to be published in Hyperfine Interact. (2012).Google Scholar
  17. 17.
    R. Wallace, S.E. Woosley, Astrophys. J. Suppl. Ser. 45, 389 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    H. Schatz et al., Phys. Rep. 294, 167 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Sun, M. Wiescher, A. Aprahamian, J. Fisker, Nucl. Phys. A 758, 765 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    G. Martínez-Pinedo, A. Poves, E. Caurier, A.P. Zuker, Phys. Rev. C 53, R2602 (1996).Google Scholar
  21. 21.
    B.H. Wildenthal, M.S. Curtin, B.A. Brown, Phys. Rev. C 28, 1343 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    H. Fujita et al., Phys. Rev. C 75, 034310 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    K. Peräjärvi et al., Nucl. Phys. A 696, 233 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    Z. Janas et al., Eur. Phys. J. A 12, 143 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    H. Jongsma, A.D. Silva, J. Bron, H. Verheul, Nucl. Phys. A 179, 554 (1972).ADSCrossRefGoogle Scholar
  26. 26.
    J.M. Freeman et al., Nucl. Phys. 69, 433 (1965).CrossRefGoogle Scholar
  27. 27.
    A. Kankainen et al., Eur. Phys. J. A 25, 129 (2005).CrossRefGoogle Scholar
  28. 28.
    A. Jokinen et al., Eur. Phys. J. A 3, 271 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    L.M. Fraile, J. Äystö, Nucl. Instrum. Methods Phys. Res. A 513, 287 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    A. Kankainen, Ph.D. thesis, Department of Physics, University of Jyväskylä (2006).Google Scholar
  31. 31.
    Y. Novikov et al., Eur. Phys. J. A 11, 257 (2001).ADSCrossRefGoogle Scholar
  32. 32.
    J. Parmonen et al., Nucl. Instrum. Methods Phys. Res. A 306, 504 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    A. Piechaczek et al., Phys. Rev. C 61, 047306 (2000).ADSCrossRefGoogle Scholar
  34. 34.
    J. Döring et al., Phys. Rev. C 57, 1159 (1998).ADSCrossRefGoogle Scholar
  35. 35.
    J.J. Ressler et al., Phys. Rev. Lett. 84, 2104 (2000).ADSCrossRefGoogle Scholar
  36. 36.
    J. Döring et al., Phys. Rev. C 59, 59 (1999).ADSCrossRefGoogle Scholar
  37. 37.
    A. Kankainen et al., Eur. Phys. J. A 25, 355 (2005).ADSCrossRefGoogle Scholar
  38. 38.
    C.J. Lister, P.E. Haustein, D.E. Alburger, J.W. Olness, Phys. Rev. C 24, 260 (1981).ADSCrossRefGoogle Scholar
  39. 39.
    S. Della Negra, H. Gauvin, D. Jacquet, Y. Le Beyec, Z. Phys. A 307, 305 (1982).Google Scholar
  40. 40.
    S. Mitarai et al., Nucl. Phys. A 557, 381 (1993).ADSCrossRefGoogle Scholar
  41. 41.
    C.M. Baglin, Nucl. Data Sheets 109, 2257 (2008).ADSCrossRefGoogle Scholar
  42. 42.
    A. Kankainen et al., Eur. Phys. J. A 29, 271 (2006).ADSCrossRefGoogle Scholar
  43. 43.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).ADSCrossRefGoogle Scholar
  44. 44.
    R. Iafigliola, J.K.P. Lee, Phys. Rev. C 13, 2075 (1976).ADSCrossRefGoogle Scholar
  45. 45.
    W.X. Huang et al., Phys. Rev. C 59, 2402 (1999).ADSCrossRefGoogle Scholar
  46. 46.
    T. Kuroyanagi et al., Nucl. Phys. A 484, 264 (1988).ADSCrossRefGoogle Scholar
  47. 47.
    D. Bucurescu et al., Z. Phys. A 342, 403 (1992).ADSCrossRefGoogle Scholar
  48. 48.
    T. Shizuma et al., Z. Phys. A 348, 25 (1994).ADSCrossRefGoogle Scholar
  49. 49.
    R. Iafigliola, S.C. Gujrathi, B.L. Tracy, J.K.P. Lee, Can. J. Phys. 52, 96 (1974).ADSCrossRefGoogle Scholar
  50. 50.
    K. Oxorn, S.K. Mark, Z. Phys. A 303, 63 (1981).Google Scholar
  51. 51.
    C. Weber et al., Phys. Rev. C 78, 054310 (2008).ADSCrossRefGoogle Scholar
  52. 52.
    D. Rudolph et al., Phys. Rev. C 47, 2574 (1993).ADSCrossRefGoogle Scholar
  53. 53.
    S. Dean et al., Eur. Phys. J. A 21, 243 (2004).ADSCrossRefGoogle Scholar
  54. 54.
    E. Browne, Nucl. Data Sheets 82, 379 (1997).ADSCrossRefGoogle Scholar
  55. 55.
    G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980).Google Scholar
  56. 56.
    M. König et al., Int. J. Mass Spectrom. Ion Process. 142, 95 (1995).ADSCrossRefGoogle Scholar
  57. 57.
    A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003).ADSCrossRefGoogle Scholar
  58. 58.
    R.T. Birge, Phys. Rev. 40, 207 (1932).ADSCrossRefzbMATHGoogle Scholar
  59. 59.
    V.-V. Elomaa et al., Nucl. Instrum. Methods Phys. Res. A 612, 97 (2009).ADSCrossRefGoogle Scholar
  60. 60.
    T. Eronen et al., Phys. Rev. Lett. 100, 132502 (2008).ADSCrossRefGoogle Scholar
  61. 61.
    J. Äystö et al., Nucl. Phys. A 404, 1 (1983).ADSCrossRefGoogle Scholar
  62. 62.
    J.C. de Lange et al., Z. Phys. A 279, 79 (1976).ADSCrossRefGoogle Scholar
  63. 63.
    D.F. Geesaman et al., Phys. Rev. Lett. 34, 326 (1975).ADSCrossRefGoogle Scholar
  64. 64.
    K. Eskola, Phys. Lett. 23, 471 (1966).ADSCrossRefGoogle Scholar
  65. 65.
    K. Jackson et al., Phys. Lett. B 33, 281 (1970).ADSCrossRefGoogle Scholar
  66. 66.
    M.L. Commara et al., Nucl. Phys. A 708, 167 (2002).ADSCrossRefGoogle Scholar
  67. 67.
    C. Plettner et al., Nucl. Phys. A 733, 20 (2004).ADSCrossRefGoogle Scholar
  68. 68.
    N. Mărginean et al., Phys. Rev. C 67, 061301 (2003).Google Scholar
  69. 69.
    E. Nolte, H. Hick, Z. Phys. A 305, 289 (1982).Google Scholar
  70. 70.
    I. Perlman et al., Phys. Rev. 127, 917 (1962).ADSCrossRefGoogle Scholar
  71. 71.
    J. Cerny, J. Esterl, R. Gough, R. Sextro, Phys. Lett. B 33, 284 (1970).ADSCrossRefGoogle Scholar
  72. 72.
    J. Cerny, R.A. Gough, R.G. Sextro, J.E. Esterl, Nucl. Phys. A 188, 666 (1972).ADSCrossRefGoogle Scholar
  73. 73.
    D. Mueller, E. Kashy, W. Benenson, H. Nann, Phys. Rev. C 12, 51 (1975).ADSCrossRefGoogle Scholar
  74. 74.
    K. Schmidt et al., Z. Phys. A 350, 99 (1994).ADSCrossRefGoogle Scholar
  75. 75.
    I. Mukha et al., Phys. Rev. C 70, 044311 (2004).ADSCrossRefGoogle Scholar
  76. 76.
    I. Mukha et al., Phys. Rev. Lett. 95, 022501 (2005).ADSCrossRefGoogle Scholar
  77. 77.
    I. Mukha et al., Nature 439, 298 (2006).ADSCrossRefGoogle Scholar
  78. 78.
    A. Kankainen et al., Phys. Rev. Lett. 101, 142503 (2008).ADSCrossRefGoogle Scholar
  79. 79.
    K. Kaneko, Y. Sun, M. Hasegawa, T. Mizusaki, Phys. Rev. C 77, 064304 (2008).ADSCrossRefGoogle Scholar
  80. 80.
    M. Aggarwal, Phys. Lett. B 693, 489 (2010).ADSCrossRefGoogle Scholar
  81. 81.
    D. Kast et al., Z. Phys. A 356, 363 (1997).ADSCrossRefGoogle Scholar
  82. 82.
    O.L. Pechenaya et al., Phys. Rev. C 76, 011304 (2007).ADSCrossRefGoogle Scholar
  83. 83.
    I. Mukha, H. Grawe, E. Roeckl, S. Tabor, Phys. Rev. C 78, 039803 (2008).ADSCrossRefGoogle Scholar
  84. 84.
    O.L. Pechenaya et al., Phys. Rev. C 78, 039804 (2008).ADSCrossRefGoogle Scholar
  85. 85.
    D.G. Jenkins, Phys. Rev. C 80, 054303 (2009).ADSCrossRefGoogle Scholar
  86. 86.
    I. Mukha, E. Roeckl, H. Grawe, S. Tabor, arXiv: 1008.5346v1 [nucl-ex] (2010).Google Scholar
  87. 87.
    J. Cerny et al., Phys. Rev. Lett. 103, 152502 (2009).ADSCrossRefGoogle Scholar
  88. 88.
    T. Kessler et al., Nucl. Instrum. Methods Phys. Res. B 266, 4420 (2008).ADSCrossRefGoogle Scholar
  89. 89.
    M. Reponen et al., Eur. Phys. J. A 42, 509 (2009).ADSCrossRefGoogle Scholar
  90. 90.
    W. Kurcewicz et al., Z. Phys. A 308, 21 (1982).ADSCrossRefGoogle Scholar
  91. 91.
    K. Ogawa, Phys. Rev. C 28, 958 (1983).ADSCrossRefGoogle Scholar
  92. 92.
    S.E. Arnell et al., Phys. Rev. C 49, 51 (1994).ADSCrossRefGoogle Scholar
  93. 93.
    J. Sinatkas, L.D. Skouras, D. Strottman, J.D. Vergados, J. Phys. G 18, 1401 (1992).ADSCrossRefGoogle Scholar
  94. 94.
    K. Schmidt et al., Nucl. Phys. A 624, 185 (1997).ADSCrossRefGoogle Scholar
  95. 95.
    C. Fröhlich et al., Phys. Rev. Lett. 96, 142502 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag 2012

Authors and Affiliations

  • A. Kankainen
    • 1
    • 8
  • Yu. N. Novikov
    • 2
  • M. Oinonen
    • 3
  • L. Batist
    • 2
  • V.-V. Elomaa
    • 1
    • 5
    • 8
  • T. Eronen
    • 1
    • 6
    • 8
  • J. Hakala
    • 1
  • A. Jokinen
    • 1
  • P. Karvonen
    • 1
  • M. Reponen
    • 1
  • J. Rissanen
    • 1
  • A. Saastamoinen
    • 1
  • G. Vorobjev
    • 4
  • C. Weber
    • 1
    • 7
    • 8
  • J. Äystö
    • 1
  1. 1.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  2. 2.Petersburg Nuclear Physics InstituteGatchinaRussia
  3. 3.Dating LaboratoryUniversity of HelsinkiHelsinkiFinland
  4. 4.Gesellschaft für Schwerionenforschung mbHDarmstadtGermany
  5. 5.Turku PET Centre, Accelerator LaboratoryÅbo Akademi UniversityTurkuFinland
  6. 6.Max-Planck-Institut für KernphysikHeidelbergGermany
  7. 7.Department of PhysicsLudwig-Maximilians-Universität MünchenGarchingGermany
  8. 8.University of JyväskyläJyväskyläFinland

Personalised recommendations