Advertisement

Organometallic Dendrimers: Design, Redox Properties and Catalytic Functions

  • Didier Astruc
  • Catiá Ornelas
  • Jaime Ruiz
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The divergent synthesis, properties and functions of dendrimers terminated by metallocenyl redox groups are briefly illustrated in this micro-review, with emphasis on molecular electronics, sensing with regenerable derivatized Pt electrodes and efficient catalysis with dendrimer-stabilized Pd nanoparticles.

Keywords

Nanoparticle Catalyst Dendritic Core Silyl Group Ferrocenyl Group Nanoparticle Catalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The valuable efforts and contributions of students and colleagues cited in the references to the subject of this micro-review and financial assistance from the Institut Universitaire de France (IUF), the Université Bordeaux I, the Centre National de la Recherche Scientifique (CNRS) and the Agence Nationale de la Recherche (ANR) are gratefully acknowledged.

References

  1. 1.
    Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Micelles. J Org Chem 50:2003–2004CrossRefGoogle Scholar
  2. 2.
    Tomalia DA, Naylor AM, Goddard WA III (1990) Angew Chem Int 29:138–175CrossRefGoogle Scholar
  3. 3.
    Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW (1999) Science 266:1226CrossRefGoogle Scholar
  4. 4.
    (a) Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and dendrons. Concepts, syntheses, applications. Wiley, Weinheim; (b) Newkome GR (ed) (1994, 1995, 1996, 1999, 2002) Advances in dendritic molecules, vols 1, 2, 3, 4, 5. JAI Press, GreenwichGoogle Scholar
  5. 5.
    Tomalia DA, Fréchet JMJ (eds) (2003) Dendrimers and other dendritic polymers. Wiley, AmsterdamGoogle Scholar
  6. 6.
    (a) Vögtle F, Richardt G, Werner N (2007) Dendritische Moleküle – Konzepte, Synthesen, Eigenschaften, Anwendungen. B. G. Teubner-Verlag, Stuttgart; (b) Vögtle F (ed) (1998, 2000, 2001) Dendrimer I, II and III. Springer, BerlinGoogle Scholar
  7. 7.
    (a) Newkome GR, Moorefield CN (1992) Aldrichim Acta 25:31; (b) Newkome GR (1998) Pure Appl Chem 70:2337Google Scholar
  8. 8.
    (a) Tomalia DA, Dupont Durst H (1993) In: Weber E (ed) Topics Curr Chem, Supramolecular chemistry, directed synthesis and molecular recognition. vol 165. Springer, Berlin, 193; (b) Tomalia DA (2005) Mater Today 34Google Scholar
  9. 9.
    Balzani V, Campagna S, Denti G, Juris A, Serroni S, Venturi M (1998) Acc Chem Res 31:26CrossRefGoogle Scholar
  10. 10.
    Moore JS (1997) Acc Chem Res 30:402CrossRefGoogle Scholar
  11. 11.
    Zeng F, Zimmermann SC (1997) Chem Rev 97:1681–1712CrossRefGoogle Scholar
  12. 12.
    Bauer RE, Grimsdale AC, Müllen K (2005) Top Curr Chem 245:253–286Google Scholar
  13. 13.
    Percec V (1995) Pure Appl Chem 67:2031–2038CrossRefGoogle Scholar
  14. 14.
    (a) Ardoin, N, Astruc, D (1995) Bull Soc Chim Fr 132:875–909; (b) Astruc D (1996) C. R. Acad. Sci 322: Sér. II b, 757–766Google Scholar
  15. 15.
    Matthews OA, Shipway AN, Stoddart JF (1998) Prog Polym Sci 23:1–56CrossRefGoogle Scholar
  16. 16.
    Newkome GR, He E, Moorefield CN (1999) Chem Rev 99:1689–1746CrossRefGoogle Scholar
  17. 17.
    Bosman AW, Janssen HM, Meijer EW (1999) Chem Rev 99:1665–1688CrossRefGoogle Scholar
  18. 18.
    (a) Hawker C, Fréchet JMJ (1990) Chem Commun 1010–1011; (1990) J Am Chem Soc 112:7638–7643; (b) Miller TM, Neeman TX (1990) Mater Chem 2:346–350Google Scholar
  19. 19.
    Fréchet JMJ (1994) Science 263:1710–1715CrossRefGoogle Scholar
  20. 20.
    Fréchet JMJ (1995) Science 269:1080–1082CrossRefGoogle Scholar
  21. 21.
    Hecht S, Fréchet JMJ (2001) Angew Chem Int Ed Engl 40:74–77CrossRefGoogle Scholar
  22. 22.
    Grayson SM, Fréchet JMJ (2001) Chem Rev 101:3819–3867CrossRefGoogle Scholar
  23. 23.
    Fréchet JMJ (1999) Pure Appl Chem A33:1399–1407Google Scholar
  24. 24.
    Issberner J, Moors R, Vögtle F (1994) Angew Chem Int Ed 33:2413–2420; Fischer M, Vögtle F (1999) Angew Chem Int Ed 38:884–890Google Scholar
  25. 25.
    Friedhofen J, Vögtle F (2006) New J Chem 30:32–43CrossRefGoogle Scholar
  26. 26.
    Chow H-F, Mong K-K, Nongrum MF, Wan C-W (1998) Tetrahedron 54:8543–8660CrossRefGoogle Scholar
  27. 27.
    Gorman C (1998) Adv Mat 10:295–309CrossRefGoogle Scholar
  28. 28.
    Reviews on phosphorus- and silicon-based dendrimers: (a) Gudat D (1997) Angew Chem Int Ed Engl 36:1951–1958; (b) Caminade A-M, Majoral J-P (1999) Chem Rev 99:845–863Google Scholar
  29. 29.
    Astruc D (2003) Pure Appl Chem 75:461–481CrossRefGoogle Scholar
  30. 30.
    Astruc D (ed) (2003) Dendrimers and nanoscience C. R. Chimie 6Google Scholar
  31. 31.
    (a) Tomalia DA (1994) Adv Mat 6:529–539; (b) Tomalia DA, Dvornic PR (1994) Nature 372:617–618Google Scholar
  32. 32.
    Tomalia DA (2005) Mater Today 8:34–46CrossRefGoogle Scholar
  33. 33.
    (a) Meltzer AD, Tirrel DA, Jones AA, Inglefield PT, Hedstrand DM, Tomalia DA (1992) Macromolecules 25:4541; (b) Mijovic J, Ristic S, Kenny J (2007) Macromolecules 40:5212Google Scholar
  34. 34.
    Chase PA, Gebbink RJ, Klein M, van Koten G (2004) J Organomet Chem 689:4016–4054CrossRefGoogle Scholar
  35. 35.
    Schlüter AD, Rabe PJ (2000) Angew Chem Int Ed Engl 39:864CrossRefGoogle Scholar
  36. 36.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  37. 37.
    Voit BI (2003) C R Chimie 6:821–832CrossRefGoogle Scholar
  38. 38.
    Oosterom GE, Reek JNH, Kamer PCJ, van Leeuwen PWNM (2001) Angew Chem Int Ed 40:1828–1849CrossRefGoogle Scholar
  39. 39.
    Kreiter R, Kleij AW, Klein Gebbink RJM, van Koten G (2001) In: Vögtle F, Schalley CA (eds). Dendrimers IV: metal coordination, self assembly, catalysis, vol 217. Top Curr Chem, Springer, Berlin, 163Google Scholar
  40. 40.
    (a) Astruc D, Chardac F (2001) Chem Rev 101:2991–3024; (b) van Heerbeeck R, Kamer PCJ, van Leeuwen PWNM, Reek JNH (2002) Chem Rev 102:3717–3756Google Scholar
  41. 41.
    Méry D, Astruc D (2006) Coord Chem Rev 250:1965–1979CrossRefGoogle Scholar
  42. 42.
    Moorefield CN, Newkome GR (2007) New J Chem 31:1192–1217CrossRefGoogle Scholar
  43. 43.
    Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181–190CrossRefGoogle Scholar
  44. 44.
    Scott RWJ, Wilson OM, Crooks RM (2005) J Phys Chem B 109:692–704CrossRefGoogle Scholar
  45. 45.
    Moulines F, Astruc D (1988) Angew Chem Int Ed Engl 27:1347–1349CrossRefGoogle Scholar
  46. 46.
    (a) Astruc D (1983) Tetrahedron 39:4027–4095; (b) Trujillo HA, Casado C, Ruiz J, Astruc, D (1999) J Am Chem Soc 121:5674–5686Google Scholar
  47. 47.
    Astruc D, Hamon J-R, Román E, Michaud P (1981) J Am Chem Soc 103:7502–7514CrossRefGoogle Scholar
  48. 48.
    Sartor V, Djakovitch L, Fillaut J-L, Moulines F, Neveu F, Marvaud V, Guittard J, Blais J-C, Astruc D (1999) J Am Chem Soc 121:2929–2930CrossRefGoogle Scholar
  49. 49.
    (a) Hamon J-R, Astruc D, Michaud P (1981) J Am Chem Soc 103:758–766; (b) Desbois M-H, Astruc D, Guillin J, Varret F, Trautwein AX, Villeneuve G (1989) J Am Chem Soc 111: 5800–5809; (c) Lacoste M, Rabaa H, Astruc D, Le Beuze A, Saillard J-Y, Précigoux G, Courseille C, Ardoin N, Bowyer W (1989) Organometallics 8:2233–2242Google Scholar
  50. 50.
    (a) Catheline D, Astruc D (1983) J Organometal Chem 248:C9-C12; (b) Catheline D, Astruc D (1984) Organometallics 3:1094–1100; (d) Ruiz J, Astruc D (2008) Inorg Chim Acta 361:1–4Google Scholar
  51. 51.
    (a) Newkome GR, Yao Z, Baker GR, Gupta VK (1983) J Org Chem 50:2003; (b) Newkome GR (1998) Pure Appl Chem 70:2337; (c) Narayanan VV, Newkome GR (1998) Top Curr Chem 197:19Google Scholar
  52. 52.
    Krsda SW, Seyferth D (1998) J Am Chem Soc 120:3604CrossRefGoogle Scholar
  53. 53.
    Ornelas C, Ruiz J, Astruc D (2006) Org Lett 8:2751CrossRefGoogle Scholar
  54. 54.
    van der Made AW, van Leeuwen PWNM, Brandes RAC (1993) Adv Mater 5:466CrossRefGoogle Scholar
  55. 55.
    (a) Valério C, Fillaut J-L, Ruiz J, Guittard J, Blais J-C, Astruc D (1997) J. Am Chem Soc 119:2588; (b) Ruiz J, Ruiz-Medel M-J, Daniel M-C, Blais J-C, Astruc D (2003) Chem Commun 464; (c) Daniel M-C, Ruiz J, Blais J-C, Daro N, Astruc D (2003) Chemistry. Eur J 9:4371; (d) Daniel M-C, Ruiz J, Astruc D (2003) J Am Chem Soc 125:1150; (e) Daniel M-C, Ba F, Ruiz J, Astruc D (2004) Inorg Chem 43:8649Google Scholar
  56. 56.
    (a) Nlate S, Ruiz J, Blais J-C, Astruc D (2000) Chem Commun 417; (b) Nlate S, Ruiz J, Sartor V, Navarro R, Blais J-C, Astruc D (2000) Chem Eur J 6:2544Google Scholar
  57. 57.
    (a) Daniel M-C, Ruiz J, Nlate S, Palumbo J, Blais J-C, Astruc D (2000) Chem Commun 2001; (b) Daniel M-C, Ruiz J, Nlate S, Blais J-C, Astruc D (2003) J Am Chem Soc 125:2617; (c) Daniel M-C, Astruc D (2004) Chem Rev 104:293; (d) Astruc D, Daniel M-C, Ruiz J (2004) Chem Commun 2637Google Scholar
  58. 58.
    (a) Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004; (b) Bock VD, Hiemstra H, van Maarseveen JH (2006) Eur J Org Chem 51Google Scholar
  59. 59.
    Ornelas C, Ruiz J, Cloutet E, Alves S, Astruc D (2007) Angew Chem Int Ed Engl 46:872CrossRefGoogle Scholar
  60. 60.
    (a) Ornelas C, Salmon L, Ruiz J, Astruc D (2007) Chem Commun 49464948; (b) Ornelas C, Salmon L, Ruiz J, Astruc D (2008) Chem Eur J 14:50–64Google Scholar
  61. 61.
    Bönnemann H, Nagabushana KS (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 1. ASP, Stevenson Ranch p 777Google Scholar
  62. 62.
    Toshima N, Yonezawa Y (1998) New J Chem 22:1179CrossRefGoogle Scholar
  63. 63.
    (a) Astruc D, Lu F, Ruiz J (2005) Angew Chem Int Ed 44:7852; (b) Astruc D (2007) Inorg Chem 46:1884Google Scholar
  64. 64.
    (a) Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877; (b) Balogh L, Tomalia DA (1998) J Am Chem Soc 120:7355Google Scholar
  65. 65.
    Esumi K, Suzuki A, Aihara N, Usui K, Torigoe K (1998) Langmuir 14:3157CrossRefGoogle Scholar
  66. 66.
    (a) Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181; (b) Scott RWJ, Wilson OM, Crooks RMJ (2005) Phys Chem B 109:692; (c) Chandler BD, Gilbertson JD (2006) Top Organomet Chem 20:97Google Scholar
  67. 67.
    Diallo A, Ornelas C, Ruiz J, Salmon L, Astruc D (2007) Angew Chem Int Ed 46:8644–8648CrossRefGoogle Scholar
  68. 68.
    de Vries AHM, Parlevliet FJ, Schmeder-van de Vondervoort L, Mommers JHM, Henderickx HJW, Walet MAN, de Vries AHM (2002) Adv Synth Catal 344:996CrossRefGoogle Scholar
  69. 69.
    de Vries AHM, Mulders JMCA, Mommers JHM, Hendericks HJW, de Vries JG (2003) Org Lett 5:3285CrossRefGoogle Scholar
  70. 70.
    de Vries JG (2006) Dalton Trans 421Google Scholar
  71. 71.
    (a) Plault L, Hauseler A, Nlate S, Astruc D, Gatard S, Neumann R (2004) Angew Chem Int Ed 43:2924–2928; (b) Heuze K, Méry D, Gauss D, Astruc D (2003) Chem Commun 2274–2275; (c) Heuze K, Méry D, Gauss D, Blais J-C, Astruc D (2004) Chem Eur J 10:3936–3944Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institut des Sciences Moléculaires, UMR CNRS N°5255Université Bordeaux ITalence CedexFrance

Personalised recommendations