The Amazingly Complex Behaviour of Molybdenum Blue Solutions

  • Ekkehard Diemann
  • Achim Müller
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


We describe the history and provide a better understanding of the longtime puzzle of “molybdenum blue solutions”. Furthermore, with the discovery of various other structurally well-defined, giant, hydrophilic molybdenum-oxide based species, inorganic chemists have successfully pushed the size limit of inorganic ions into the nanometer scale. Consequently, this progress provides new challenges in different fields, for example, the physical chemistry of solutions. The giant anions show totally different solution behaviour when compared to regular inorganic ions, owing to their sizes and especially their surface properties.


Dynamic Light Scattering Hollow Sphere Cluster Anion Dynamic Light Scattering Measurement Giant Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the European Union, the German-Israeli Foundation for Scientific Research & Development (GIF) and the Volkswagen Foundation for continuous support of our work. We also gratefully acknowledge the contributions of Tianbo Liu (Lehigh) who performed a series of investigations on the assembly processes of the giant molybdenum-oxide based clusters, and furthermore Andreas Dress (ICB Shanghai), Martin Chaplin (SBU London), Hermann Weingärtner (RUB Bochum) and their respective groups to this work (cf. references cited).


  1. 1.
    Schwarzenbach G (1950) Allgemeine und Anorganische Chemie, 4th edn. Thieme, Stuttgart, p 117Google Scholar
  2. 2.
    Scheele CW (1793) Sämtliche Physische und Chemische Werke. In: Hermbstädt DSF (ed) vol 1. Sändig, Niederwalluf, pp 185–200 reprint 1971Google Scholar
  3. 3.
    Schufle JA (1985) Torbern Bergman: a man before his time. Coronado Press, LawrenceGoogle Scholar
  4. 4.
    For the older literature cf. Gmelins Handbuch der Anorganischen Chemie (1935) System-Nr 53, 8th edn. Verlag Chemie, Berlin, and references cited thereinGoogle Scholar
  5. 5.
    Berzelius JJ (1826) Poggend Ann Phys Chem 6:369CrossRefGoogle Scholar
  6. 6.
    Müller A, Krickemeyer E, Meyer J, Bögge H, Peters F, Plass W, Diemann E, Dillinger S, Nonnenbruch F, Randerath M, Menke C (1995) Angew Chem Int Ed 34: 2122; See also Müller A, Peters F, Pope MT, Gatteschi D (1998) Chem Rev 98:239Google Scholar
  7. 7.
    Müller A, Serain C (2000) Acc Chem Res 33:2CrossRefGoogle Scholar
  8. 8.
    (a) Müller A, Roy S (2003) Coord Chem Rev 245: 153; (b) Müller A, Koop M, Bögge H, Schmidtmann M, Peters F, Kögerler P (1999) Chem Commun 1885; (c) Müller A, Roy S (2004) In: Rao CNR, Müller A, Cheetham AK (eds) The chemistry of nanomaterials: synthesis, properties and applications. Wiley-VCH, Weinheim, chapter 14, pp 452–475; (d) Müller A, Koop M, Bögge H, Schmidtmann M, Beugholt C (1998) Chem Commun 1501 (in that paper the problem of the charge determination of the {Mo154} and {Mo176} type species has been discussed)Google Scholar
  9. 9.
    Müller A, Das SK, Fedin VP, Krickemeyer E, Beugholt C, Bögge H, Schmidtmann M, Hauptfleisch B (1999) Anorg Allg Chem 625:1187CrossRefGoogle Scholar
  10. 10.
    (a) Müller A, Das SK, Krickemeyer E, Kuhlmann C (2004) In: Shapley JR (ed) Inorganic synthesis, vol 34. Wiley, New York, pp 191–200; (b) Müller A, Roy S (2005) Eur J Inorg Chem 3561; (c) Cronin L, Diemann E, Müller A (2003) In: Woollins JD (ed) Inorganic experiments. Wiley-VCH, Weinheim, pp 340–346Google Scholar
  11. 11.
    (a) Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Peters F, Menke C, Meyer J (1997) Angew Chem Int Ed 36:483; (b) Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Beugholt C, Das SK, Peters F (1999) Chem Eur J 5:1496; (c) Cronin L, Kögerler P, Müller A (2000) J Solid State Chem 152:57 (a review)Google Scholar
  12. 12.
    (a) Müller A, Kögerler P, Dress A (2001) Coord Chem Rev 222: 193; (b) Müller A, Kögerler P, Kulhmann C (1999) Chem Commun 1347; (c) Müller A, Kögerler P, Bögge H (2000) Struct Bond 96:203Google Scholar
  13. 13.
    Müller A, Beckmann E, Bögge H, Schmidtmann M, Dress A (2002) Angew Chem Int Ed 41:1162Google Scholar
  14. 14.
    Müller A, Diemann E, Kuhlmann C, Eimer W, Serain C, Tak T, Knöchel A, Pranzas PK (2001) Chem Commun 1928; See also ref. 7Google Scholar
  15. 15.
    Chu B (1991) Laser light scattering, 2nd edn. Academic, New YorkGoogle Scholar
  16. 16.
    Provencher SW (1976) Biophys J 16:27CrossRefGoogle Scholar
  17. 17.
    Liu T, Diemann E, Li H, Dress AWM, Müller A (2003) Nature 426:59CrossRefGoogle Scholar
  18. 18.
    (a) Nandi N, Bhattacharyya K, Bagchi B (2000) Chem Rev 100:2013; (b) Oleinikova A, Sasisanker P, Weingärtner H (2004) J Phys Chem B 108:8467; (c) Baar C, Buchner R, Kunz W (2001) J Phys Chem B 105:2906 and 2914Google Scholar
  19. 19.
    Oleinikova A, Weingärtner H, Chaplin M, Diemann E, Bögge H, Müller A (2007) Chem Phys Chem 8:646, and references cited thereinGoogle Scholar
  20. 20.
    Jung HT, Coldren B, Zasadzinski JA, Iampietro DJ, Kaler EW (2001) Proc Natl Acad Sci USA 98:1353CrossRefGoogle Scholar
  21. 21.
    (a) Liu G, Liu T (2005) J Am Chem Soc 127:6942; (b) Liu T, Imber B, Diemann E, Liu G, Cokleski K, Li H, Chen Z, Müller A (2006) J Am Chem Soc 128:15914Google Scholar
  22. 22.
    Israelachvili J, Gourdon D (2001) Science 292:867CrossRefGoogle Scholar
  23. 23.
    See also articles referring to dissipative and non-dissipative systems in: Müller A, Dress A, Vögtle F (eds) (1996) From simplicity to complexity in chemistry – and beyond, Part I. Vieweg, Wiesbaden, as well as Mainzer K, Müller A, Saltzer WG (eds) (1998) From simplicity to complexity, Part II. information – interaction – emergence, Vieweg, WiesbadenGoogle Scholar
  24. 24.
    See for instance the book Emsley J (2001) Nature’s building blocks: an A – Z guide to the elements. Oxford University Press, Oxford, chapter: Molybdenum, section: Element of history, p 263. There we read: About this time (1781) Scheele discovered a simple and specific test for molybdenum. […] (molybdate) would form an intense blue colour on adding a reducing agent to the solution. […]. The test was used for almost 200 years, despite the fact that chemists could not identify the agent responsible for the colour. In 1996 the puzzle was solved by a group of German chemists at the University of Bielefeld who showed it to consist of a cyclical cluster made up of 154 molybdenum atoms interlinked with oxygen atoms.; (b) Gouzerh P, Che M (2006) From Scheele and Berzelius to Müller: Polyoxometalates (POMs) revisited and the “missing link” between the bottom up and top down approaches, L’Actualité Chimique, June Issue, No. 298, 9Google Scholar
  25. 25.
    Shishido S, Ozeki T (2008) J Am Chem Soc 130:10588CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity of BielefeldBielefeldGermany

Personalised recommendations