Skip to main content

Rational Design of Single-Molecule Magnets

  • Conference paper
  • First Online:
Complexity in Chemistry and Beyond: Interplay Theory and Experiment

Abstract

Single-molecule magnets possess a superior property in comparison to other polynuclear but only paramagnetic transition metal complexes: single-molecule magnets can be magnetized and they remain magnetized, even in the absence of an external magnetic field. They exhibit a hysteresis in the magnetization in analogy to the well-established solid-state magnets. Due to these promising properties, single-molecule magnets have attracted a great deal of research. However, the key property, the blocking temperature, has not been increased since the discovery of the first single-molecule magnet Mn12. A reason for this failure may be found in the prevalence of serendipitous approaches to new single-molecule magnets: metal ions and small ligands are reacted in the hope to obtain a new single-molecule magnet. The massive characterization of Mn12 has shed light on necessary requirements for a polynuclear transition metal complex to behave as a single-molecule magnet. Besides the usually accepted two requirements (i.e. a high spin ground state and a magnetic anisotropy), a control of the molecular topology seems to be highly demanded. In order to reduce the tunneling through the anisotropy barrier, the rhombicity of the spin ground state should be close to zero. This requires at least a molecular C3 symmetry. Additionally, the overall metal ion arrangement should be lower than a cubic. Otherwise, the local magnetic anisotropies cancel each other by projecting onto the spin ground state. We have performed a ligand design in accordance to the above given requirements, which will be presented here. The triplesalen ligand combines the phloroglucinol bridging unit for high spin ground state and a salen like coordination environment for local magnetic anisotropies. In addition, this ligand is C3 symmetric and imposes a C3 symmetry on its complexes. The first example of a rationally designed single-molecule magnet, Mn6Cr3+, will be described in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gatteschi D, Kahn O, Miller JS, Palacio F (eds) (1991) Magnetic molecular materials, vol 198, NATO ASI Series, Series E: Appl. Sciences. Kluwer Acad. Publ, Dordrecht

    Google Scholar 

  2. Miller JS, Epstein AJ (1994) Angew Chem Int Ed Engl 33:385–415

    Google Scholar 

  3. Coronado E, Delhaès P, Gatteschi D, Miller JS (eds) (1996) Molecular magnetism: from molecular assemblies to the devices, vol 321, NATO ASI Series, Series E: Applied Sciences. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  4. Miller JS, Drillon M (2001–2005) Magnetism: molecules to materials, vol I-V. Wiley-VCH, Weinheim

    Google Scholar 

  5. Miller JS (2000) Inorg Chem 39:4392–4408

    CAS  Google Scholar 

  6. Miller JS, Krusic PJ, Epstein AJ, Reiff WM, Zhang JH (1985) Mol Cryst Liq Cryst 120:27–34

    CAS  Google Scholar 

  7. Miller JS, Calabrese JC, Epstein AJ, Bigelow RW, Zhang JH, Reiff WM (1986) J Chem Soc, Chem Comm 1026–1028

    Google Scholar 

  8. Miller JS, Calabrese JC, Rommelmann H, Chittipeddi S, Epstein AJ, Zhang JH, Reiff WM (1987) J Am Chem Soc 109:769–781

    CAS  Google Scholar 

  9. Kahn O (1993) Molecular magnetism. VCH Publisher, New York

    Google Scholar 

  10. Gatteschi D (1994) Adv Mat 6:635–645

    CAS  Google Scholar 

  11. Turnball MM, Sugimoto T, Thompson LK (eds) (1996) Molecule-based magnetic materials, vol 644, ACS Symposium Series. ACS, Washington, D. C

    Google Scholar 

  12. Manriquez JM, Yee GT, McLean RS, Epstein AJ, Miller JS (1991) Science 252:1415–1417

    CAS  PubMed  Google Scholar 

  13. Gordon DC, Deakin L, Arif AM, Miller JS (2000) J Am Chem Soc 122:290–299

    CAS  Google Scholar 

  14. Ferlay S, Mallah T, Ouahes R, Veillet P, Verdaguer M (1995) Nature 378:701–703

    CAS  Google Scholar 

  15. McConnel HM (1967) Proc Robert A Welch Found Conf 11:144

    Google Scholar 

  16. Kollmar C, Kahn O (1991) J Am Chem Soc 1991:7987–7994

    Google Scholar 

  17. Kollmar C, Couty M, Kahn O (1991) J Am Chem Soc 113:7994–8005

    CAS  Google Scholar 

  18. Miller JS, Epstein AJ (1998) J Chem Soc Chem Comm 1319–1325

    Google Scholar 

  19. Miller JS, Epstein AJ, Reiff WM (1988) Chem Rev 88:201–220

    CAS  Google Scholar 

  20. Zhang J, Ensling J, Ksenofontov V, Gutlich P, Epstein AJ, Miller JS (1998) Angew Chem 110:676–679

    Google Scholar 

  21. Verdaguer M, Bleuzen A, Marvaud V, Vaissermann J, Seuleiman M, Desplanches C, Scuiller A, Train C, Garde R, Gelly G, Lomenech C, Rosenman I, Veillet P, Cartier C, Villain F (1999) Coord Chem Rev 190–192, 1023–1047

    Google Scholar 

  22. Mallah T, Thiebaut S, Verdaguer M, Veillet P (1993) Science 262:1554–1557

    CAS  PubMed  Google Scholar 

  23. Entley WR, Girolami GS (1994) Inorg Chem 33:5165–5166

    CAS  Google Scholar 

  24. Entley WR, Treadway CR, Wilson SR, Girolami GS (1997) J Am Chem Soc 119:6251–6258

    CAS  Google Scholar 

  25. Dujardin E, Ferlay S, Phan X, Desplanches C, Moulin CCD, Sainctavit P, Baudelet F, Dartyge E, Veillet P, Verdaguer M (1998) J Am Chem Soc 120:11347–11352

    CAS  Google Scholar 

  26. Ferlay S, Mallah T, Ouahes R, Veillet P, Verdaguer M (1999) Inorg Chem 38:229–234

    CAS  Google Scholar 

  27. Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Science 271:49–51

    CAS  Google Scholar 

  28. Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Science 272:704–705

    CAS  PubMed  Google Scholar 

  29. Verdaguer M (1996) Science 272:698–699

    CAS  Google Scholar 

  30. Kahn O (1987) Struct Bonding 68:89–167

    CAS  Google Scholar 

  31. Kahn O, Pei Y, Verdaguer M, Renard JP, Sletten J (1988) J Am Chem Soc 110:782–789

    CAS  Google Scholar 

  32. Nakatani K, Bergerat P, Codjovi E, Mathoniere C, Yu P, Kahn O (1991) Inorg Chem 30:3977–3978

    CAS  Google Scholar 

  33. Karasawa S, Sano Y, Akita T, Koga N, Itoh T, Iwamura H, Rabu P, Drillon M (1998) J Am Chem Soc 120:10080–10087

    CAS  Google Scholar 

  34. Decurtins S, Schmalle HW, Schneuwly P, Ensling J, Gutlich P (1994) J Am Chem Soc 116:9521–9528

    CAS  Google Scholar 

  35. Laget V, Hornick C, Rabu P, Drillon M, Ziessel R (1998) Coord Chem Rev 180:1533–1553

    Google Scholar 

  36. Yufit DS, Price DJ, Howard JAK, Gutschke SOH, Powell AK, Wood PT (1999) Chem Comm 1561–1562

    Google Scholar 

  37. Batten SR, Hoskins BF, Moubaraki B, Murray KS, Robson R (1999) J Chem Soc, Dalton Trans 2977–2986

    Google Scholar 

  38. Batten SR, Jensen P, Kepert CJ, Kurmoo M, Moubaraki B, Murray KS, Price DJ (1999) J Chem Soc, Dalton Trans 2987–2997

    Google Scholar 

  39. Escuer A, Vicente R, ElFallah MS, Kumar SB, Mautner FA, Gatteschi D (1998) J Chem Soc, Dalton Trans 3905–3909

    Google Scholar 

  40. Tamaki H, Zhong ZJ, Matsumoto N, Kida S, Koikawa M, Achiwa N, Hashimoto Y, Okawa H (1992) J Am Chem Soc 114:6974–6979

    CAS  Google Scholar 

  41. Ribas J, Escuer A, Monfort M, Vicente R, Cortes R, Lezama L, Rojo T (1999) Coord Chem Rev 195:1027–1068

    Google Scholar 

  42. Manson JL, Arif AM, Miller JS (1999) Chem Comm 1479–1480

    Google Scholar 

  43. Caneschi A, Gatteschi D, Sessoli R, Rey P (1989) Acc Chem Res 22:392–398

    CAS  Google Scholar 

  44. Caneschi A, Gatteschi D, Renard JP, Rey P, Sessoli R (1989) J Am Chem Soc 111:785–786

    CAS  Google Scholar 

  45. Caneschi A, Ferraro F, Gatteschi D, Rey P, Sessoli R (1991) Inorg Chem 30:3162–3166

    CAS  Google Scholar 

  46. Luneau D, Rey P, Laugier J, Fries P, Caneschi A, Gatteschi D, Sessoli R (1991) J Am Chem Soc 113:1245–1251

    CAS  Google Scholar 

  47. Caneschi A, Gatteschi D, Sessoli R, Rey P, Cabello CI (1992) J Mat Chem 2:1283–1287

    CAS  Google Scholar 

  48. Caneschi A, Chiesi P, David L, Ferraro F, Gatteschi D, Sessoli R (1993) Inorg Chem 32:1445–1453

    CAS  Google Scholar 

  49. Caneschi A, Gatteschi D, Sessoli R (1993) Inorg Chem 32:4612–4616

    CAS  Google Scholar 

  50. Halcrow MA, Brechin EK, McInnes EJL, Mabbs FE, Davies JE (1998) J Chem Soc, Dalton Trans 2477–2482

    Google Scholar 

  51. Miller JS (1994) Adv Mat 6:322–324

    CAS  Google Scholar 

  52. Brandon EJ, Kollmar C, Miller JS (1998) J Am Chem Soc 120:1822–1826

    CAS  Google Scholar 

  53. Brandon EJ, Arif AM, Burkhart BM, Miller JS (1998) Inorg Chem 37:2792–2798

    CAS  PubMed  Google Scholar 

  54. Rittenberg DK, Sugiura K, Sakata Y, Mikami S, Epstein AJ, Miller JS (2000) Adv Mat 12:126–130

    CAS  Google Scholar 

  55. Lis T (1980) Acta Cryst 36:2042–2046

    Google Scholar 

  56. Boyd PDW, Li QY, Vincent JB, Folting K, Chang HR, Streib WE, Huffman JC, Christou G, Hendrickson DN (1988) J Am Chem Soc 110:8537–8539

    CAS  Google Scholar 

  57. Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Nature 365:141–143

    CAS  Google Scholar 

  58. Sessoli R, Tsai HL, Schake AR, Wang SY, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) J Am Chem Soc 115:1804–1816

    CAS  Google Scholar 

  59. Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B (1996) Nature 383:145–147

    CAS  Google Scholar 

  60. Tsai HL, Eppley HJ, Devries N, Folting K, Christou G, Hendrickson DN J Chem Soc, Chem Comm1745–1746

    Google Scholar 

  61. Sun ZM, Ruiz D, Dilley NR, Soler M, Ribas J, Folting K, Maple MB, Christou G, Hendrickson DN (1999) Chem Comm 1973–1974

    Google Scholar 

  62. Boskovic C, Pink M, Huffman JC, Hendrickson DN, Christou G (2001) Am Chem Soc 123:9914–9915

    CAS  Google Scholar 

  63. Boskovic C, Brechin EK, Streib WE, Folting K, Bollinger JC, Hendrickson DN, Christou G (2002) J Am Chem Soc 124:3725–3736

    CAS  PubMed  Google Scholar 

  64. Wieghardt K, Pohl K, Jibril I, Huttner G (1984) Angew Chem Int Ed Engl 23:77–78

    Google Scholar 

  65. Delfs C, Gatteschi D, Pardi L, Sessoli R, Wieghardt K, Hanke D (1993) Inorg Chem 32:3099–3103

    CAS  Google Scholar 

  66. Barra AL, Debrunner P, Gatteschi D, Schulz CE, Sessoli R (1996) Europhys Lett 35:133–138

    CAS  Google Scholar 

  67. Barra A-L, Bencini F, Caneschi A, Gatteschi D, Paulsen C, Sangregorio C, Sessoli R, Sorace L (2001) Chem Phys Chem 2:523–531

    CAS  PubMed  Google Scholar 

  68. Tejada J, Chudnovsky EM, del Barca E, Hernandez JM, Spiller TP (2001) Nanotechnology 12:181–186

    CAS  Google Scholar 

  69. Tejada J (2001) Polyhedron 20:1751–1756

    CAS  Google Scholar 

  70. Awschalom DD, Di Vincenzo DP, Smyth JJ (1992) Science 258:414–421

    CAS  PubMed  Google Scholar 

  71. Leuenberger MN, Loss D (2001) Nature 410:789–793

    CAS  PubMed  Google Scholar 

  72. Cornia A, Fabretti AC, Pacchioni M, Zobbi L, Bonachi D, Caneschi A, Gatteschi D, Biagi R, Del Pennino U, De Renzi V, Gurevich L, Van der Zant HSJ (2003) Angew Chem Int Ed 42:1645–1648

    CAS  Google Scholar 

  73. Dahlberg ED (1995) Phys Today 48:34–40

    CAS  Google Scholar 

  74. Kahn O (2000) Acc Chem Res 33:647–657

    CAS  PubMed  Google Scholar 

  75. Kahn O (1985) Angew Chem Int Ed 24:834–850

    Google Scholar 

  76. Verdaguer M (2001) Polyhedron 20:1115–1128

    CAS  Google Scholar 

  77. Glaser T, Theil H, Liratzis I, Weyhermüller T, Bill E (2006) Inorg Chem 45:4889–4891

    CAS  PubMed  Google Scholar 

  78. Goodenough JB (1955) Phys Rev 79:564

    Google Scholar 

  79. Goodenough JB (1958) J Phys Chem Solids 6:287

    CAS  Google Scholar 

  80. Goodenough JB (1963) Magnetism and the chemical bond. Interscience, New York

    Google Scholar 

  81. Kanamori J (1959) J Phys Chem Solids 10:87–98

    CAS  Google Scholar 

  82. Anderson PW (1959) Phys Rev 115:2–13

    CAS  Google Scholar 

  83. Anderson PW (ed) (1963) Magnetism. Academic, New York

    Google Scholar 

  84. Weihe H, Güdel HU (1997) Inorg Chem 36:3632–3639

    CAS  PubMed  Google Scholar 

  85. Anderson PW, Hasegawa H (1955) Phys Rev 100:675–681

    CAS  Google Scholar 

  86. Zener C (1951) Phys Rev 82:403–405

    CAS  Google Scholar 

  87. Blondin G, Girerd J-J (1990) Chem Rev 90:1359–1376

    CAS  Google Scholar 

  88. Glaser T, Beissel T, Bill E, Weyhermüller T, Schünemann V, Meyer-Klaucke W, Trautwein AX, Wieghardt K (1999) J Am Chem Soc 121:2193–2208

    CAS  Google Scholar 

  89. Glaser T, Kesting F, Beissel T, Bill E, Weyhermüller T, Meyer-Klaucke W, Wieghardt K (1999) Inorg Chem 38:722–732

    CAS  PubMed  Google Scholar 

  90. Glaser T, Wieghardt K (1998) In: Hodgson KO, Solomon EI (eds) Spectroscopic methods in bioinorganic chemistry, ACS symposium series, ACS, Washington, DC, pp 314–331

    Google Scholar 

  91. Longuet-Higgins HC (1950) J Chem Phys 18:265–274

    CAS  Google Scholar 

  92. Iwamura H (1990) Adv Phys Org Chem 26:179–253

    CAS  Google Scholar 

  93. Dougherty DA (1991) Acc Chem Res 24:88–94

    CAS  Google Scholar 

  94. Ovchinnikov AA (1978) Theoret Chim Acta 47:297–304

    CAS  Google Scholar 

  95. Yoshizawa K, Hoffmann R (1995) J Am Chem Soc 117:6921–6926

    CAS  Google Scholar 

  96. Glaser T, Gerenkamp M, Fröhlich R (2002) Angew Chem Int Ed 41:3823–3825

    CAS  Google Scholar 

  97. Glaser T, Heidemeier M, Grimme S, Bill E (2004) Inorg Chem 43:5192–5194

    CAS  PubMed  Google Scholar 

  98. Glaser T, Heidemeier M, Weyhermüller T, Hoffmann R-D, Rupp H, Müller P (2006) Angew Chem Int Ed 45:6033–6037

    CAS  Google Scholar 

  99. Glaser T, Heidemeier M, Fröhlich R (2007) Compt Rend Chim 10:71–78

    CAS  Google Scholar 

  100. Glaser T, Heidemeier M, Strautmann JBH, Bögge H, Stammler A, Krickemeyer E, Huenerbein R, Grimme S, Bothe E, Bill E (2007) Chem Eur J 13:9191–9206

    CAS  PubMed  Google Scholar 

  101. Theil H, Frhr v, Richthofen C-G, Krickemeyer E, Stammler A, Bögge H, Glaser T (2008) Inorg Chim Acta 361:916–924

    CAS  Google Scholar 

  102. Glaser T, Theil H, Heidemeier M (2008) C R Chimie 11:1121–1136

    CAS  Google Scholar 

  103. Rajca A (2002) Chem Eur J 8:4834–4841

    CAS  PubMed  Google Scholar 

  104. Iwamura H, Koga N (1993) Acc Chem Res 26:346–351

    CAS  Google Scholar 

  105. Oberhausen KJ, Obrien RJ, Richardson JF, Buchanan RM, Costa R, Latour JM, Tsai HL, Hendrickson DN (1993) Inorg Chem 32:4561–4565

    CAS  Google Scholar 

  106. Okamoto M, Teki Y, Takui T, Kinoshita T, Itoh K (1990) Chem Phys Lett 173:265–270

    CAS  Google Scholar 

  107. Mitsubori S.-i, Ishida T, Nogami T, Iwamura H (1994) Chem Lett 285–288

    Google Scholar 

  108. Ishida T, Mitsubori S-i, Nogami T, Takeda N, Ishikawa M, Iwamura H (2001) Inorg Chem 40:7059–7064

    CAS  PubMed  Google Scholar 

  109. Ishida T, Nakayama K, Nakagawa M, Sato W, Ishikawa Y (1997) Synth Met 85:1655–1658

    CAS  Google Scholar 

  110. Lloret F, de Munno G, Julve M, Cano J, Ruiz R, Caneschi A (1998) Angew Chemie 110:143–145

    Google Scholar 

  111. Ishida T, Mitsubori S-i, Nogami T, Iwamura H (1993) Mol Cryst Liq Cryst 233:345–350

    CAS  Google Scholar 

  112. Yasui M, Ishikawa Y, Akiyama N, Ishida T, Nogami T, Iwasaki F (2001) Acta Cryst B57:288–295

    CAS  Google Scholar 

  113. Feyerhem R, Abens S, Günther D, Ishida T, Meißner M, Meschke M, Nogami T, Steiner M (2000) J Phys Condens Matter 12:8495–8509

    Google Scholar 

  114. Ezuhara T, Endo K, Matsuda K, Aoyama Y (2000) New J Chem 24:609–613

    CAS  Google Scholar 

  115. Omata J, Ishida T, Hashizume D, Iwasaki F, Nogami T (2001) Inorg Chem 40:3954–3958

    CAS  PubMed  Google Scholar 

  116. Ishida T, Kawakami T, Mitsubori S.-i, Nogami T, Yamaguchi K, Iwamura H (2002) J Chem Soc, Dalton Trans 3177–3186

    Google Scholar 

  117. Kusaka T, Ishida T, Hashizume D, Iwasaki F, Nogami T (2000) Chem Lett 1146–1147

    Google Scholar 

  118. Zusai K, Katayama T, Ishida T, Nogami T (2000) Mol Cryst Liq Cryst 343:121–126

    CAS  Google Scholar 

  119. Nakayama K, Ishida T, Takayama R, Hashizume D, Yasui M, Iwasaki F, Nogami T (1998) Chem Lett 497–498

    Google Scholar 

  120. Corbin DR, Francesconi LC, Hendrickson DN, Stucky GD (1981) Inorg Chem 20:2084–2089

    CAS  Google Scholar 

  121. McCleverty JA, Ward MD (1998) Acc Chem Res 31:842–851

    CAS  Google Scholar 

  122. Cargill Thompson AMW, Gatteschi D, McCleverty JA, Navas JA, Rentschler E, Ward MD (1996) Inorg Chem 35:2701–2703

    PubMed  Google Scholar 

  123. Bayly SR, Humphrey ER, de Chair H, Paredes CG, Bell ZR, Jeffery JC, McCleverty JA, Ward MD, Totti F, Gatteschi D, Courric S, Steele BR, Screttas CG (2001) J Chem Soc, Dalton Trans 1401–1414

    Google Scholar 

  124. Ung VA, Thompson A, Bardwell DA, Gatteschi D, Jeffery JC, McCleverty JA, Totti F, Ward MD (1997) Inorg Chem 36:3447–3454

    CAS  Google Scholar 

  125. Ung VA, Couchman SM, Jeffery JC, McCleverty JA, Ward MD, Totti F, Gatteschi D (1999) Inorg Chem 38:365–369

    CAS  Google Scholar 

  126. Bayly SR, McCleverty JA, Ward MD, Gatteschi D, Totti F (2000) Inorg Chem 39:1288–1293

    CAS  PubMed  Google Scholar 

  127. Bencini A, Gatteschi D, Totti F, Sanz DN, McCleverty JA, Ward MD (1998) J Phys Chem A 102:10545–10551

    CAS  Google Scholar 

  128. Fernández I, Ruiz R, Faus J, Julve M, Lloret F, Cano J, Ottenwaelder X, Journaux Y, Munoz C (2001) Angew Chem Int Ed 40:3039–3042

    Google Scholar 

  129. Pereira CLM, Pedroso EF, Stumpf HO, Novak MA, Ricard L, Ruiz-Garcia R, Rivière E, Journaux Y (2004) Angew Chem Int Ed 43:956–958

    CAS  Google Scholar 

  130. Pardo E, Bernot K, Julve M, Lloret F, Cano J, Ruiz-Garcia R, Pasán J, Ruiz-Perez C, Ottenwaelder X, Journaux Y (2004) Chem Comm 920–921

    Google Scholar 

  131. Pardo E, Bernot K, Julve M, Lloret F, Cano J, Ruiz-Garcia R, Delgado FS, Ruiz-Perez C, Ottenwaelder X, Journaux Y (2004) Inorg Chem 43:2768–2770

    CAS  PubMed  Google Scholar 

  132. Foxon SP, Torres GR, Walter O, Pedersen JZ, Toftlund H, Hüber M, Falk K, Haase W, Cano J, Lloret F, Julve M, Schindler S (2004) Eur J Inorg Chem 335–343

    Google Scholar 

  133. Paital AR, Mitra T, Ray D, Wong WT, Ribas-Ariño J, Novoa JJ, Ribas J, Aromi G (2005) Chem Comm 5172–5174

    Google Scholar 

  134. Ottenwaelder X, Cano J, Journaux Y, Riviere E, Brennan C, Nierlich M, Ruiz-Garcia R (2004) Angew Chem Int Ed 43:850–852

    CAS  Google Scholar 

  135. Bencini A, Ciofini I, Uytterhoeven MG (1998) Inorg Chim Acta 274:90–101

    CAS  Google Scholar 

  136. Bencini A, Gatteschi D (1990) Electron paramagnetic resonance of exchanged coupled systems. Springer, Berlin

    Google Scholar 

  137. Gatteschi D, Sorace L (2001) J Solid State Chem 159:253–261

    CAS  Google Scholar 

  138. Glaser T (2004) Angew Chem 115:5846–5848

    Google Scholar 

  139. Gatteschi D, Sessoli R (2003) Angew Chem Int Ed 42:268–297

    CAS  Google Scholar 

  140. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford

    Google Scholar 

  141. Wernsdorfer W (2001) Adv Chem Phys 118:1–93

    Google Scholar 

  142. Kennedy BJ, Brain G, Horn E, Murray KS, Snow MR (1985) Inorg Chem 24:1647–1653

    CAS  Google Scholar 

  143. Basler R, Tregenna-Piggot PLW, Dobe C, Güdel HU, Janssen S, McIntyre GJ (2001) J Am Chem Soc 123:3377–3378

    CAS  PubMed  Google Scholar 

  144. Barra AL, Gatteschi D, Sessoli R, Abbati GL, Cornia A, Fabretti AC, Uytterhoeven MG (1997) Angew Chem Int Ed Engl 36:2329–2331

    CAS  Google Scholar 

  145. Krzystek J, Telser J, Hoffman BM, Brunel L-C, Licoccia S (2001) J Am Chem Soc 123:7890–7897

    CAS  PubMed  Google Scholar 

  146. Bendix J, Gray HB, Golubkov G, Gross Z (2000) J Chem Soc, Chem Commun 1957–1958

    Google Scholar 

  147. Krzystek J, Telser J, Pardi LA, Goldberg DP, Hoffman BM, Brunel L-C (1999) Inorg Chem 38:6121–6129

    CAS  PubMed  Google Scholar 

  148. Goldberg DP, Telser J, Krzystek J, Montalban AG, Brunel L-C, Barrett AGM, Hoffman BM (1997) J Am Chem Soc 119:8722–8723

    CAS  Google Scholar 

  149. Limburg J, Vrettos JS, Crabtree RH, Brudvig GW, de Paula JC, Hassan A, Barra A-L, Duboc-Toia C, Collomb M-N (2001) Inorg Chem 40:1698–1703

    CAS  PubMed  Google Scholar 

  150. Larrow JF, Jacobsen EN, Gao Y, Hong Y, Nie X, Zepp CM (1994) J Org Chem 59:1939–1942

    CAS  Google Scholar 

  151. Larrow JF, Jacobsen EN (1997) Org Synth 75:1–10

    Google Scholar 

  152. Zhang W, Jacobsen EN (1991) J Org Chem 56:2296–2298

    CAS  Google Scholar 

  153. Campbell KA, Lashley MR, Wyatt JK, Nantz MH, Britt RD (2001) J Am Chem Soc 123:5710–5719

    CAS  PubMed  Google Scholar 

  154. Hernández-Molina R, Mederos A (2004) In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 1. Elsevier, Ltd, Oxford, pp 411–446

    Google Scholar 

  155. Lopez J, Liang S, Bu XR (1998) Tetrahedron Lett 39:4199–4202

    CAS  Google Scholar 

  156. Janssen KBM, Laquierra I, Dehaen W, Parton RF, Vankelecom IFJ, Jacobs PA (1997) Tetrahedron: Asymmetry 8:3481–3487

    CAS  Google Scholar 

  157. Atkins R, Brewer G, Kokot E, Mockler GM, Sinn E (1985) Inorg Chem 24:127–134

    CAS  Google Scholar 

  158. Böttcher A, Elias H, Eisenmann B, Hilms E, Huer A, Kniep R, Röhr CZ (1994) Naturforsch B 49:1089–1100

    Google Scholar 

  159. Fernandey Garcia MI, Fondo M, Garcia Deibe AM, Fernandez Fernandez MB, Gonzalez AMZ (2000) Anorg Allg Chem 626:1985–1991

    Google Scholar 

  160. Glaser T, Heidemeier M, Hahn FE, Pape T, Lügger T (2003) Z Naturforsch B 58:505–510

    CAS  Google Scholar 

  161. Glaser T, Heidemeier M, Lügger T (2003) Dalton Trans 2381–2383

    Google Scholar 

  162. Glaser T, Heidemeier M, Fröhlich R, Hildebrandt P, Bothe E, Bill E (2005) Inorg Chem 44:5467–5482

    CAS  PubMed  Google Scholar 

  163. Long JR (ed) (2003) Molecular cluster magnets. In: Chemistry of nanostructured materials. World Scientific, Hong Kong

    Google Scholar 

  164. Miyasaka H, Matsumoto N, Okawa H, Re N, Gallo E, Floriani C (1996) J Am Chem Soc 118:981–994

    CAS  Google Scholar 

  165. Re N, Gallo E, Floriani C, Miyasaka H, Matsumoto N (1996) Inorg Chem 35:6004–6008

    CAS  Google Scholar 

  166. Miyasaka H, Ieda H, Matsumoto N, Re N, Crescenzi R, Floriani C (1998) Inorg Chem 37:255–263

    CAS  Google Scholar 

  167. Re N, Crescenzi R, Floriani C, Miyasaka H, Matsumoto N (1998) Inorg Chem 37:2717–2722

    CAS  PubMed  Google Scholar 

  168. Miyasaka H, Matsumoto N, Re N, Gallo E, Floriani C (1997) Inorg Chem 36:670–676

    CAS  Google Scholar 

  169. Verdaguer M, Bleuzen A, Marvaud V, Vaissermann J, Seuleiman M, Desplanches C, Scuiller A, Train C, Garde R, Gelly G, Lomenech C, Rosenman I, Veillet P, Cartier C, Villain F (1999) Coord Chem Rev 192:1023–1047

    Google Scholar 

  170. Ohba M, Okawa H (2000) Coord Chem Rev 198:313–328

    CAS  Google Scholar 

  171. Beltran LMC, Long JR (2005) Acc Chem Res 38:325–334

    CAS  PubMed  Google Scholar 

  172. Rebilly J-N, Mallah T (2006) Struct Bonding 122:103–131

    CAS  Google Scholar 

  173. Shen XP, Li BL, Zou JZ, Xu Z, Yu YP, Liu SX (2002) Trans Met Chem 4:372

    Google Scholar 

  174. Choi HJ, Sokol JJ, Long JR (2004) Inorg Chem 43:1606–1608

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge financial support from the Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft, dem Bundesministerium für Bildung und Forschung, der Dr. Otto Röhm Gedächtnisstiftung as well as the universities of Münster and Bielefeld. I deeply appreciate the fundamental work of one of my first co-workers, Dr. Maik Heidemeier, who started this project and who did all the syntheses described herein. Additionally, I am very thankful to my collaborators and friends to this project: Dr. Eckhard Bill, Dr. Thomas Weyhermüller (both MPI for Bioinorganic Chemistry), Prof. Paul Müller (University of Nürnberg/Erlangen), and Dr. Rolf-Dieter Hoffmann (University of Münster).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Glaser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Glaser, T. (2012). Rational Design of Single-Molecule Magnets. In: Hill, C., Musaev, D.G. (eds) Complexity in Chemistry and Beyond: Interplay Theory and Experiment. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5548-2_4

Download citation

Publish with us

Policies and ethics