Multi-electron Transfer Catalysts for Air-Based Organic Oxidations and Water Oxidation

  • Weiwei Guo
  • Zhen Luo
  • Jie Song
  • Guibo Zhu
  • Chongchao Zhao
  • Hongjin Lv
  • James W. Vickers
  • Yurii V. Geletii
  • Djamaladdin G. Musaev
  • Craig L. Hill
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Catalysts for multi-electron-transfer events are quite complicated just as the reactions they facilitate. Two classes of such catalysts, those for the air-based oxidation of organic compounds and those for the oxidation of water, are addressed in this chapter. Brief backgrounds in both these areas are provided followed by the ensemble of current challenges in each area illustrated by two ongoing cases in point. The efficient and sustained oxidation of water to dioxygen is critical to the production of solar fuels, which in turn may ultimately be necessary given the increasing cost of ever-less-accessible fossil fuels, the projected demographic trends, and the environmental consequences of fossil fuel use. Importantly, water oxidation catalysts must be connected with other functional units (light absorbers, reduction catalysts and key interfaces) to realize nanostructures or devices that efficiently produce solar fuels. Unfortunately these functional units are dependent on each other and also on several factors, thus predicting overall operation is a challenge in complexity.


Cobalt Oxide Water Oxidation Charge Transfer Event Solar Fuel Proton Couple Electron Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the U.S. Department of Defense (the Army Research Office and the Defense Threat Reduction Agency (DTRA)) for funding complex catalysts for air-based oxidations and the Department of Energy, Office of Basic Energy Sciences for funding our research on catalytic water oxidation.


  1. 1.
    Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic Press, New YorkGoogle Scholar
  2. 2.
    Hill CL (1999) Nature 401:436CrossRefGoogle Scholar
  3. 3.
    Neumann R (2004) Polyoxometalates as catalysts for oxidation with hydrogen peroxide and molecular oxygen. In: Beller M, Bolm C (eds) Transition metals for organic synthesis, 2nd edn., vol 2, Wiley, Weinheim, p 415Google Scholar
  4. 4.
    Neumann R (2004) Mod Oxid Methods 223Google Scholar
  5. 5.
    Boring E, Geletii YV, Hill CL (2001) J Am Chem Soc 123:1625CrossRefGoogle Scholar
  6. 6.
    Boring E, Geletii YV, Hill CL (2003) In: Simandi LI (ed) Advances in catalytic activation of dioxygen by metal complexes, vol 26, Kluwer Academic Publishers, Dordrecht, p 227Google Scholar
  7. 7.
    Rhule JT, Neiwert WA, Hardcastle KI, Do BT, Hill CL (2001) J Am Chem Soc 123:12101CrossRefGoogle Scholar
  8. 8.
    Okun NM, Anderson TM, Hill CL (2003) J Mol Catal A Chem 197:283CrossRefGoogle Scholar
  9. 9.
    Kholdeeva OA, Timofeeva MN, Maksimov GM, Maksimovskaya RI, Neiwert WA, Hill CL (2005) Inorg Chem 44:666CrossRefGoogle Scholar
  10. 10.
    Kholdeeva OA, Timofeeva MN, Maksimov, GM, Maksimovskaya RI, Rodionova AA, Hill CL (2005) Aerobic formaldehyde oxidation under mild conditions mediated by ce-containing polyoxometalates. In: Sowa JR Jr (ed) Catalysis of organic reactions, Marcel Dekker, Inc., New York, p 429Google Scholar
  11. 11.
    Song J, Luo Z, Britt D, Furukawa H, Yaghi OM, Hardcastle KI, Hill CL (2011) J Am Chem Soc 133:16839CrossRefGoogle Scholar
  12. 12.
    Yang YC, Baker JA, Ward JR (1992) Chem Rev 92:1729CrossRefGoogle Scholar
  13. 13.
    Hill CL, Okun NM, Hillesheim DA, Geletii YV (2007) In: Reynolds JG, Lawson GE, Koester CJ, (eds) Anti-terrorism and homeland defense: polymers and materials, ACS symposium series 980, chapter 12, American Chemical Society, Washington, DC, p 198Google Scholar
  14. 14.
    Black JF (1978) Am Chem Soc 100:527CrossRefGoogle Scholar
  15. 15.
    Partenheimer W (1995) Catal Today 23:69CrossRefGoogle Scholar
  16. 16.
    Chow J, Kopp RJ, Portney PR (2003) Science 302:1528CrossRefGoogle Scholar
  17. 17.
    Lewis NS, Nocera DG (2006) Proc Natl Acad Sci 103(43):15729CrossRefGoogle Scholar
  18. 18.
    Balzani V, Credi A, Venturi M (2008) ChemSusChem 1:26CrossRefGoogle Scholar
  19. 19.
    Gray HB (2009) Nat Chem 1:7CrossRefGoogle Scholar
  20. 20.
    Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Chem Rev 110:6474CrossRefGoogle Scholar
  21. 21.
    Hammarstrom L, Hammes-Schiffer S (2009) Acc Chem Res 42:1859CrossRefGoogle Scholar
  22. 22.
    Eisenberg R, Gray HB (2008) Inorg Chem 47:1697CrossRefGoogle Scholar
  23. 23.
    Cukier RI, Nocera DG (1998) Annu Rev Phys Chem 49:337CrossRefGoogle Scholar
  24. 24.
    Huynh MHV, Meyer TJ (2007) Chem Rev 107:5004CrossRefGoogle Scholar
  25. 25.
    Hammes-Schiffer S (2009) Acc Chem Res 42:1881CrossRefGoogle Scholar
  26. 26.
    Hammes-Schiffer S, Stuchebrukhov AA (2010) Chem Rev 110:6939CrossRefGoogle Scholar
  27. 27.
    Warren JJ, Tronic TA, Mayer JM (2010) Chem Rev 110:6961CrossRefGoogle Scholar
  28. 28.
    Kuhne H, Brudvig GW (2002) J Phys Chem B 106:8189CrossRefGoogle Scholar
  29. 29.
    Carra C, Iordanova N, Hammes-Schiffer S (2003) J Am Chem Soc 125:10429CrossRefGoogle Scholar
  30. 30.
    Kumar A, Sevilla MD (2010) Chem Rev 110:7002CrossRefGoogle Scholar
  31. 31.
    Petek H, Zhao J (2010) Chem Rev 110:7082CrossRefGoogle Scholar
  32. 32.
    Barber J (2009) Chem Soc Rev 38:185CrossRefGoogle Scholar
  33. 33.
    Chen MS, Goodman DW (2004) Science 306:252CrossRefGoogle Scholar
  34. 34.
    Chen M, Cai Y, Yan Z, Goodman DW (2006) J Am Chem Soc 128:6341CrossRefGoogle Scholar
  35. 35.
    Guzman J, Gates BC (2004) J Am Chem Soc 126:2672CrossRefGoogle Scholar
  36. 36.
    Kulkarni A, Lobo-Lapidus RJ, Gates BC (2010) Chem Commun 46:5997CrossRefGoogle Scholar
  37. 37.
    Kim WB, Voitl T, Rodriguez-Rivera GJ, Dumesic JA (2004) Science 305:1280CrossRefGoogle Scholar
  38. 38.
    Soares JMC, Bowker M (2005) Appl Catal A 291:136CrossRefGoogle Scholar
  39. 39.
    Hill CL, Prosser-McCartha CM (1995) Coord Chem Rev 143:407CrossRefGoogle Scholar
  40. 40.
    Neumann R (1998) Prog Inorg Chem 47:317CrossRefGoogle Scholar
  41. 41.
    Mizuno N, Misono M (1998) Chem Rev 98:199CrossRefGoogle Scholar
  42. 42.
    Okuhara T, Mizuno N, Misono M (2001) Appl Catal A 222:63CrossRefGoogle Scholar
  43. 43.
    Nakagawa Y, Kamata K, Kotani M, Yamaguchi K, Mizuno N (2005) Angew Chem Int Ed 44:5136CrossRefGoogle Scholar
  44. 44.
    Okun NM, Tarr JC, Hilleshiem DA, Zhang L, Hardcastle KI, Hill CLJ (2006) Mol Catal A Chem 246:11CrossRefGoogle Scholar
  45. 45.
    Martín SE, Rossi LI (2001) Tetrahedron Lett 42:7147CrossRefGoogle Scholar
  46. 46.
    Firouzabadi H, Iranpour N, Zolfigol MA (1998) Synth Commun 28:1179CrossRefGoogle Scholar
  47. 47.
    Luo Z, Geletii YV, Hillesheim DA, Wang Y, Hill CL (2011) ACS Catal 1:1364CrossRefGoogle Scholar
  48. 48.
    Okun NM, Anderson TM, Hill CL (2003) J Am Chem Soc 125:3194CrossRefGoogle Scholar
  49. 49.
    Okun NM, Ritorto MD, Anderson TM, Apkarian RP, Hill CL (2004) Chem Mater 16:2551CrossRefGoogle Scholar
  50. 50.
    Yu R, Kuang X-F, Wu X-Y, Lu C-Z, Donahue JP (2009) Coord Chem Rev 253:2872CrossRefGoogle Scholar
  51. 51.
    Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Chem Rev 110:6009CrossRefGoogle Scholar
  52. 52.
    Juan-Alcañiz J, Gascon J, Kapteijn F (2012) J Mater Chem 22:10102CrossRefGoogle Scholar
  53. 53.
    Maksimchuk NV, Timofeeva MN, Melgunov MS, Shmakov AN, Chesalov YA, Dybtsev DN, Fedin VP, Kholdeeva OA (2008) J Catal 257:315CrossRefGoogle Scholar
  54. 54.
    Maksimchuk NV, Kovalenko KA, Arzumanov SS, Chesalov YA, Melgunov MS, Stepanov AG, Fedin VP, Kholdeeva OA (2010) Inorg Chem 49:2920CrossRefGoogle Scholar
  55. 55.
    Juan-Alcañiz J, Ramos-Fernandez EV, Lafont U, Gascon J, Kapteijn F (2010) J Catal 269:229CrossRefGoogle Scholar
  56. 56.
    Juan-Alcañiz J, Goesten M, Martinez-Joaristi A, Stavitski E, Petukhov AV, Gascon J, Kapteijn F (2011) Chem Commun 47:8578CrossRefGoogle Scholar
  57. 57.
    Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) Science 283:1148CrossRefGoogle Scholar
  58. 58.
    Shevchenko D, Anderlund MF, Thapper A, Styring S (2011) Energy Environ Sci 4:1284CrossRefGoogle Scholar
  59. 59.
    Inoue H, Shimada T, Kou Y, Nabetani Y, Masui D, Takagi S, Tachibana H (2011) ChemSusChem 4:173Google Scholar
  60. 60.
    Geletii YV, Yin Q, Hou Y, Huang Z, Ma H, Song J, Besson C, Luo Z, Cao R, O’Halloran KP, Zhu G, Zhao C, Vickers JW, Ding Y, Mohebbi S, Kuznetsov AE, Musaev DG, Lian T, Hill CL (2011) Isr J Chem 51:238CrossRefGoogle Scholar
  61. 61.
    Gersten SW, Samuels GJ, Meyer TJ (1982) J Am Chem Soc 104:4029CrossRefGoogle Scholar
  62. 62.
    Hurst JK (2005) Coord Chem Rev 249:313CrossRefGoogle Scholar
  63. 63.
    McDaniel ND, Coughlin FJ, Tinker LL, Bernhard S (2008) J Am Chem Soc 130:210CrossRefGoogle Scholar
  64. 64.
    Muckerman JT, Polyansky DE, Wada T, Tanaka K, Fujita E (2008) Inorg Chem 47:1787CrossRefGoogle Scholar
  65. 65.
    Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AOT, Iha NYM, Templeton JL, Meyer TJ (2009) Acc Chem Res 42:1954CrossRefGoogle Scholar
  66. 66.
    Hull JF, Balcells D, Blakemore JD, Incarvito CD, Eisenstein O, Brudvig GW, Crabtree RH (2009) J Am Chem Soc 131:8730CrossRefGoogle Scholar
  67. 67.
    Masaoka S, Sakai K (2009) Chem Lett 38:182CrossRefGoogle Scholar
  68. 68.
    McCool NS, Robinson DM, Sheats JE, Dismukes GC (2011) J Am Chem Soc 133:11446CrossRefGoogle Scholar
  69. 69.
    Bernet L, Lalrempuia R, Ghattas W, Mueller-Bunz H, Vigara L, Llobet A, Albrecht M (2011) Chem Commun 47:8058CrossRefGoogle Scholar
  70. 70.
    Chen Z, Concepcion JJ, Meyer TJ (2011) Dalton Trans 40:3789CrossRefGoogle Scholar
  71. 71.
    Fillol JL, Codolà Z, Garcia-Bosch I, Gómez L, Pla JJ, Costas M (2011) Nat Chem 3:807CrossRefGoogle Scholar
  72. 72.
    Murakami M, Hong D, Suenobu T, Yamaguchi S, Ogura T, Fukuzumi S (2011) J Am Chem Soc 133:11605CrossRefGoogle Scholar
  73. 73.
    Wasylenko DJ, Ganesamoorthy C, Borau-Garcia J, Berlinguette CP (2011) Chem Commun 47:4249CrossRefGoogle Scholar
  74. 74.
    Roeser S, Fàrrs P, Bozoglian F, Martínez-Belmonte M, Benet-Buchholz J, Llobet A (2011) ChemSusChem 4:197CrossRefGoogle Scholar
  75. 75.
    An J, Duana L, Sun L (2012) Faraday Discuss 155:267CrossRefGoogle Scholar
  76. 76.
    Kaveevivitchai N, Zong R, Tseng H-W, Chitta R, Thummel RP (2012) Inorg Chem 51:2930CrossRefGoogle Scholar
  77. 77.
    Car P-E, Guttentag M, Baldridge KK, Albertoa R, Patzke GR (2012) Green Chem 14:1680CrossRefGoogle Scholar
  78. 78.
    Shafirovich VY, Khannanov NK, Strelets VV (1980) Nouveau J Chim 4:81Google Scholar
  79. 79.
    Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) J Chem Soc Faraday Trans 1 84:2795CrossRefGoogle Scholar
  80. 80.
    Kanan MW, Nocera DG (2008) Science 321:1072CrossRefGoogle Scholar
  81. 81.
    Youngblood WJ, Lee S-HA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) J Am Chem Soc 131:926CrossRefGoogle Scholar
  82. 82.
    Jiao F, Frei H (2009) Angew Chem Int Ed 48:1841CrossRefGoogle Scholar
  83. 83.
    Robinson DM, Go YB, Greenblatt M, Dismukes GC (2010) J Am Chem Soc 132:11467CrossRefGoogle Scholar
  84. 84.
    Carraro M, Sartorel A, Toma FM, Puntoriero F, Scandola F, Campagna S, Prato M, Bonchio M (2011) Top Curr Chem 303:121CrossRefGoogle Scholar
  85. 85.
    Gerken JB, McAlpin JG, Chen JYC, Rigsby ML, Casey WH, Britt RD, Stahl SS (2011) J Am Chem Soc 133:14431CrossRefGoogle Scholar
  86. 86.
    Pijpers JJH, Winkler MT, Surendranath Y, Buonassisi T, Nocera DG (2011) Proc Nat Acad Sci 108:10056CrossRefGoogle Scholar
  87. 87.
    Sivasankar N, Weare WW, Frei H (2011) J Am Chem Soc 133:12976CrossRefGoogle Scholar
  88. 88.
    Wang C, Xie Z, DeKrafft KE, Lin W (2011) J Am Chem Soc 133:13445CrossRefGoogle Scholar
  89. 89.
    Wang D, Jiang H, Zong X, Xu Q, Ma Y, Li G, Li C (2011) Chem Eur J 17:1275CrossRefGoogle Scholar
  90. 90.
    Geletii YV, Botar B, Kögerler P, Hillesheim DA, Musaev DG, Hill CL (2008) Angew Chem Int Ed 47:3896CrossRefGoogle Scholar
  91. 91.
    Sartorel A, Carraro M, Scorrano G, Zorzi RD, Geremia S, McDaniel ND, Bernhard S, Bonchio M (2008) J Am Chem Soc 130:5006CrossRefGoogle Scholar
  92. 92.
    Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P, Maccato C, Rapino S, Gonzalez BR, Amenitsch H, Ros TD, Casalis L, Goldoni A, Marcaccio M, Scorrano G, Scoles G, Paolucci F, Prato M, Bonchio M (2010) Nat Chem 2:826CrossRefGoogle Scholar
  93. 93.
    Geletii YV, Huang Z, Hou Y, Musaev DG, Lian T, Hill CL (2009) J Am Chem Soc 131:7522CrossRefGoogle Scholar
  94. 94.
    Orlandi M, Argazzi R, Sartorel A, Carraro M, Scorrano G, Bonchio M, Scandola F (2010) Chem Commun 46:3152CrossRefGoogle Scholar
  95. 95.
    Geletii YV, Besson C, Hou Y, Yin Q, Musaev DG, Quinonero D, Cao R, Hardcastle KI, Proust A, Kögerler P, Hill CL (2009) J Am Chem Soc 131:17360CrossRefGoogle Scholar
  96. 96.
    Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) Science 328:342CrossRefGoogle Scholar
  97. 97.
    Huang Z, Luo Z, Geletii YV, Vickers J, Yin Q, Wu D, Hou Y, Ding Y, Song J, Musaev DG, Hill CL, Lian T (2011) J Am Chem Soc 133:2068CrossRefGoogle Scholar
  98. 98.
    Crabtree RH (2012) Chem Rev 112:1536CrossRefGoogle Scholar
  99. 99.
    Schley ND, Blakemore JD, Subbaiyan NK, Incarvito CD, D’Souza F, Crabtree RH, Brudvig GW (2011) J Am Chem Soc 133:10473CrossRefGoogle Scholar
  100. 100.
    Stracke JJ, Finke RG (2011) J Am Chem Soc 133:14872CrossRefGoogle Scholar
  101. 101.
    Tanaka S, Annaka M, Sakai K (2012) Chem Commun 48:1653CrossRefGoogle Scholar
  102. 102.
    Weinstock IA, Barbuzzi EMG, Wemple MW, Cowan JJ, Reiner RS, Sonnen DM, Heintz RA, Bond JS, Hill CL (2001) Nature 414:191CrossRefGoogle Scholar
  103. 103.
    Surendranath Y, Kanan MW, Nocera DG (2010) J Am Chem Soc 132:16501CrossRefGoogle Scholar
  104. 104.
    Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L (2012) Nat Chem Published online 25 MarchGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Weiwei Guo
    • 1
  • Zhen Luo
    • 1
  • Jie Song
    • 1
  • Guibo Zhu
    • 1
  • Chongchao Zhao
    • 1
  • Hongjin Lv
    • 1
  • James W. Vickers
    • 1
  • Yurii V. Geletii
    • 1
  • Djamaladdin G. Musaev
    • 2
  • Craig L. Hill
    • 1
  1. 1.Department of ChemistryEmory UniversityAtlantaUSA
  2. 2.Department of Chemistry, Cherry L. Emerson Center for Scientific ComputationEmory UniversityAtlantaUSA

Personalised recommendations