Electron Transfer to Dioxygen by Keggin Heteropolytungstate Cluster Anions

  • Ophir Snir
  • Ira A. Weinstock
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


This chapter describes recent developments in understanding electron transfer to dioxygen (O2) and the outer-sphere oxidation of the superoxide radical anion, O 2 •− , by metal complexes. The following topics, of broad spectrum value in the complex chemistry of polyoxometalate (POM) systems and quantitative electron transfer are addressed: the nature of electron self-exchange between POMs; electron self-exchange between O2 and O 2 •− (including the problem of size differences between O2 or O 2 •− and their typical metal-complex electron donors or acceptors); and reactions of the one-electron-reduced POMs with O2. Electron transfer from Keggin POMs to O2 occurs by an outer-sphere mechanism; the effect of POM charge on rate constants for the reduction of O2 is significant and attributable to anion–anion repulsion within the successor-complex ion pairs formed between the negatively charged POM anions and O 2 •− . These findings were followed by the discovery of a concerted proton–electron (CPET) pathway for electron transfer to O2 at lower pH values (<1).


Reorganization Energy Superoxide Radical Anion Reaction Distance Keggin Anion Organic Electron Donor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tolman WB, Solomon EI (2010) Preface: forum on dioxygen activation and reduction. Inorg Chem 49:3555–3556CrossRefGoogle Scholar
  2. 2.
    Gewirth AA, Thorum MS (2010) Inorg Chem 49:3557–3566CrossRefGoogle Scholar
  3. 3.
    Smeets PJ, Woertink JS, Sels BF, Solomon EI, Schoonheydt RA (2010) Inorg Chem 49:3573–3583CrossRefGoogle Scholar
  4. 4.
    Bakac A (2010) Inorg Chem 49:3584–3593CrossRefGoogle Scholar
  5. 5.
    Neumann R (2010) Inorg Chem 49:3594–3601CrossRefGoogle Scholar
  6. 6.
    Mukherjee A, Cranswick MA, Chakrabarti M, Paine TK, Fujisawa K, Münck E, Que L (2010) Inorg Chem 49:3618–3628CrossRefGoogle Scholar
  7. 7.
    Halime Z, Kieber-Emmons MT, Qayyum MF, Mondal B, Gandhi T, Puiu SC, Chufan EE, Sarjeant AAN, Hodgson KO, Hedman B, Solomon EI, Karlin KD (2010) Inorg Chem 49:3629–3645CrossRefGoogle Scholar
  8. 8.
    Shook RL, Borovik AS (2010) Inorg Chem 49:3646–3660CrossRefGoogle Scholar
  9. 9.
    Ashley DC, Brinkley DW, Roth JP (2010) Inorg Chem 49:3661–3675CrossRefGoogle Scholar
  10. 10.
    Zhang C, Fan F-RF, Bard AJ (2009) J Am Chem Soc 131:177–181CrossRefGoogle Scholar
  11. 11.
    Shao M, Liu P, Adzic RR (2006) J Am Chem Soc 128:7408–7409CrossRefGoogle Scholar
  12. 12.
    Anderson AB, Albu TV (1999) J Am Chem Soc 121:11855–11863CrossRefGoogle Scholar
  13. 13.
    Humphreys KJ, Mirica LM, Wang Y, Klinman JP (2009) J Am Chem Soc 131:4657–4663CrossRefGoogle Scholar
  14. 14.
    Roth JP (2009) Acc Chem Res 42:399–408CrossRefGoogle Scholar
  15. 15.
    Meyer T, Huynh M, Thorp H (2007) Angew Chem Int Ed 46:5284–5304CrossRefGoogle Scholar
  16. 16.
    Roth JP, Klinman JP (2003) Proc Natl Acad Sci U S A 100:62–67CrossRefGoogle Scholar
  17. 17.
    Roth JP, Wincek R, Nodet G, Edmondson DE, McIntire WS, Klinman JP (2004) J Am Chem Soc 126:15120–15131CrossRefGoogle Scholar
  18. 18.
    Tommos C, Babcock GT (1998) Acc Chem Res 31:18–25CrossRefGoogle Scholar
  19. 19.
    Nocera DG, Guldi DM (Guest eds) (2009) Special issue on renewable energy. Chem Soc Rev 38:1–300Google Scholar
  20. 20.
    Eisenberg R, Nocera DG (Guest eds) (2005) Forum on solar and renewable energy. Inorg Chem 44:6799–7260Google Scholar
  21. 21.
    Kim WB, Voitl T, Rodriguez-Rivera GJ, Dumesic JA (2004) Science 305:1280–1283CrossRefGoogle Scholar
  22. 22.
    Bar-Nahum I, Khenkin AM, Neumann R (2004) J Am Chem Soc 126:10236–10237CrossRefGoogle Scholar
  23. 23.
    Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N (2003) Science 300:964–966CrossRefGoogle Scholar
  24. 24.
    Weinstock IA, Barbuzzi EMG, Wemple MW, Cowan JJ, Reiner RS, Sonnen DM, Heintz RA, Bond JS, Hill CL (2001) Nature 414:191–195CrossRefGoogle Scholar
  25. 25.
    Weiner H, Finke RG (1999) J Am Chem Soc 121:9831–9842CrossRefGoogle Scholar
  26. 26.
    Neumann R, Dahan M (1997) Nature 388:353–355CrossRefGoogle Scholar
  27. 27.
    Hill CL, Weinstock IA (1997) Nature 388:332–333CrossRefGoogle Scholar
  28. 28.
    Renneke RF, Hill CL (1986) J Am Chem Soc 108:3528–3529CrossRefGoogle Scholar
  29. 29.
    Fedotov MA, Maksimovskaya RI, Begalieva DU, Il’yasova AK (1980) Izv Akad Nauk SSSR Ser Khim 7:1477–1480Google Scholar
  30. 30.
    Kozik M, Baker LCW (1990) J Am Chem Soc 112:7604–7611CrossRefGoogle Scholar
  31. 31.
    Kozik M, Hammer CF, Baker LCW (1986) J Am Chem Soc 108:7627–7630CrossRefGoogle Scholar
  32. 32.
    Geletii YV, Hill CL, Bailey AJ, Hardcastle KI, Atalla RH, Weinstock IA (2005) Inorg Chem 44:8955–8966CrossRefGoogle Scholar
  33. 33.
    Geletii YV, Weinstock IA (2006) J Mol Cat A Chem 251:255–262CrossRefGoogle Scholar
  34. 34.
    Sutin N (1982) Acc Chem Res 15:275–282CrossRefGoogle Scholar
  35. 35.
    Grigoriev VA, Cheng D, Hill CL, Weinstock IA (2001) J Am Chem Soc 123:5292–5307CrossRefGoogle Scholar
  36. 36.
    Grigoriev VA, Hill CL, Weinstock IA (2000) J Am Chem Soc 122:3544–3545CrossRefGoogle Scholar
  37. 37.
    Geletii YV, Hill CL, Atalla RH, Weinstock IA (2006) J Am Chem Soc 128:17033–17042CrossRefGoogle Scholar
  38. 38.
    Czap A, Neuman NI, Swaddle TW (2006) Inorg Chem 45:9518–9530CrossRefGoogle Scholar
  39. 39.
    Snir O, Weinstock IA (2010) Electron transfer reactions. In: Bakac A (ed) Physical inorganic chemistry applications. Wiley, HobokenGoogle Scholar
  40. 40.
    Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322CrossRefGoogle Scholar
  41. 41.
    Pladziewicz JR, Meyer TJ, Broomhead JA, Taube H (1973) Inorg Chem 12:639–643CrossRefGoogle Scholar
  42. 42.
    Bakac A, Espenson JH, Creaser II, Sargeson AM (1983) J Am Chem Soc 105:7624–7628CrossRefGoogle Scholar
  43. 43.
    Stanbury DM, Haas O, Taube H (1980) Inorg Chem 19:518–524CrossRefGoogle Scholar
  44. 44.
    Creaser II, Geue RJ, Harrowfield JM, Herlt AJ, Sargeson AM, Snow MR, Springborg J (1982) J Am Chem Soc 104:6016–6025CrossRefGoogle Scholar
  45. 45.
    Stanbury DM, Mulac WA, Sullivan JC, Taube H (1980) Inorg Chem 19:3735–3740CrossRefGoogle Scholar
  46. 46.
    McDowell MS, Espenson JH, Bakac A (1984) Inorg Chem 23:2232–2236CrossRefGoogle Scholar
  47. 47.
    Zahir K, Espenson JH, Bakac A (1988) J Am Chem Soc 110:5059–5063CrossRefGoogle Scholar
  48. 48.
    Eberson L, Gonzalez-Luque R, Lorentzon J, Merchan M, Roos BO (1993) J Am Chem Soc 115:2898–2902CrossRefGoogle Scholar
  49. 49.
    Meisel D, Fessenden RW (1976) J Am Chem Soc 98:7505–7510CrossRefGoogle Scholar
  50. 50.
    Jonsson M, Lind J, Reitberger T, Eriksen TE, Merenyi G (1993) J Phys Chem 97:8229–8233CrossRefGoogle Scholar
  51. 51.
    Weinstock IA (1998) Chem Rev 98:113–170CrossRefGoogle Scholar
  52. 52.
    Weinstock IA (2008) Inorg Chem 47:404–406CrossRefGoogle Scholar
  53. 53.
    Lind J, Shen X, Merényi G, Jonsson BÖ (1989) J Am Chem Soc 111:7654–7655CrossRefGoogle Scholar
  54. 54.
    Merenyi G, Lind J, Shen X, Eriksen TE (1990) J Phys Chem 94:748–752CrossRefGoogle Scholar
  55. 55.
    Merényi G, Lind J, Jonsson M (1993) J Am Chem Soc 115:4945–4946CrossRefGoogle Scholar
  56. 56.
    Hartnig C, Koper MTM (2002) J Electroanal Chem 532:165–170CrossRefGoogle Scholar
  57. 57.
    Sawyer DT, Valentine JS (1981) Acc Chem Res 14:393–400CrossRefGoogle Scholar
  58. 58.
    Brown GM, Sutin NA (1979) J Am Chem Soc 101:883–892CrossRefGoogle Scholar
  59. 59.
    Bull C, McClune GJ, Fee JA (1983) J Am Chem Soc 105:5290–5300CrossRefGoogle Scholar
  60. 60.
    Summers JS, Baker JB, Meyerstein D, Mizrahi A, Zilbermann I, Cohen H, Wilson CM, Jones JR (2008) J Am Chem Soc 130:1727–1734CrossRefGoogle Scholar
  61. 61.
    Hammes-Schiffer S (2009) Acc Chem Res 42:1881–1889CrossRefGoogle Scholar
  62. 62.
    Hammes-Schiffer S, Hatcher E, Ishikita H, Skone JH, Soudackov AV (2008) Coord Chem Rev 252:384–394CrossRefGoogle Scholar
  63. 63.
    Costentin C (2008) Chem Rev 108:2145–2179CrossRefGoogle Scholar
  64. 64.
    Huynh MHV, Meyer TJ (2007) Chem Rev 107:5004–5064CrossRefGoogle Scholar
  65. 65.
    Mayer JM (2004) Annu Rev Phys Chem 55:363–390CrossRefGoogle Scholar
  66. 66.
    Snir O, Wang Y, Tuckerman ME, Geletii YV, Weinstock IA (2010) J Am Chem Soc 132:11678–11691CrossRefGoogle Scholar
  67. 67.
    Costentin C, Robert M, Savéant J-M (2007) J Am Chem Soc 129:5870–5879CrossRefGoogle Scholar
  68. 68.
    Markle TF, Rhile IJ, DiPasquale AG, Mayer JM (2008) Proc Nat Acad Sci U S A 105:8185–8190CrossRefGoogle Scholar
  69. 69.
    Hammes-Schiffer S, Soudackov AV (2008) J Phys Chem B 112:14108–14123CrossRefGoogle Scholar
  70. 70.
    Irebo T, Reece SY, Sjodin M, Nocera DG, Hammarstrom L (2007) J Am Chem Soc 129:15462–15464CrossRefGoogle Scholar
  71. 71.
    Anderson AB, Cai Y, Sidik RA, Kang DB (2005) J Electroanal Chem 580:17–22CrossRefGoogle Scholar
  72. 72.
    Soudackov A, Hammes-Schiffer S (2000) J Chem Phys 113:2385–2396CrossRefGoogle Scholar
  73. 73.
    Decornez H, Hammes-Schiffer S (2000) J Phys Chem A 104:9370–9384CrossRefGoogle Scholar
  74. 74.
    Costentin C, Robert M, Savéant J-M (2007) J Am Chem Soc 129:9953–9963CrossRefGoogle Scholar
  75. 75.
    Sjodin M, Polivka T, Pan J, Styring S, Sun L, Sundstrom V, Hammarstrom L (2004) Phys Chem Chem Phys 6:4851–4858CrossRefGoogle Scholar
  76. 76.
    Marx D, Chandra A, Tuckerman ME (2010) Chem Rev 110:2174–2216CrossRefGoogle Scholar
  77. 77.
    Stoyanov ES, Stoyanova IV, Reed CA (2010) J Am Chem Soc 132:1484–1485CrossRefGoogle Scholar
  78. 78.
    Swanson JMJ, Simons J (2009) J Phys Chem B 113:5149–5161CrossRefGoogle Scholar
  79. 79.
    Siwick BJ, Cox MJ, Bakker HJ (2007) J Phys Chem B 112:378–389CrossRefGoogle Scholar
  80. 80.
    Marx D (2006) Chemphyschem 7:1848–1870CrossRefGoogle Scholar
  81. 81.
    Mohammed OF, Pines D, Dreyer J, Pines E, Nibbering ETJ (2005) Science 310:83–86CrossRefGoogle Scholar
  82. 82.
    Hynes JT (1999) Nature 397:565–566CrossRefGoogle Scholar
  83. 83.
    Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) Nature 397:601–604CrossRefGoogle Scholar
  84. 84.
    Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462CrossRefGoogle Scholar
  85. 85.
    Eigen M (1964) Angew Chem Int Ed 3:1–19CrossRefGoogle Scholar
  86. 86.
    Mohammed OF, Pines D, Pines E, Nibbering ETJ (2007) Chem Phys 341:240–257CrossRefGoogle Scholar
  87. 87.
    Bell RP (1973) The proton in chemistry. Chapman & Hall, LondonGoogle Scholar
  88. 88.
    Yoshimura A, Uddin MJ, Amasaki N, Ohno T (2001) J Phys Chem A 105:10846–10853CrossRefGoogle Scholar
  89. 89.
    Chiorboli C, Indelli MT, Rampi Scandola MA, Scandola F (1988) J Phys Chem 92:156–163CrossRefGoogle Scholar
  90. 90.
    Eigen MZ (1954) Phys Chem (Muenchen Ger) 1:176–200Google Scholar
  91. 91.
    Stickrath AB, Carroll EC, Dai X, Harris DA, Rury A, Smith B, Tang K-C, Wert J, Sension RJ (2009) J Phys Chem A 113:8513–8522CrossRefGoogle Scholar
  92. 92.
    Bagdasar’yan KS (1984) Russ Chem Rev 53:623Google Scholar
  93. 93.
    Meiboom S (1961) J Chem Phys 34:375–388CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of ChemistryBen Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations