Scattering of Light and Particles

  • Alexander Komech

Abstract

Scattering of light and electron beam by Hydrogen atom should be described by the coupled Maxwell–Schrödinger equations. However, the coupled equations are nonlinear, and so the calculations can be done only by perturbation procedure neglecting the self action; i.e., in the Born approximation. This approximation leads to some inconsistency breaking the charge conservation law, which should be fixed in a true nonlinear approach.

The corresponding scattering cross sections are similar to the classical ones given by the Thomson and Rutherford formulas respectively.

The calculation of the scattering of light relies on the limiting amplitude principle and the limiting absorption principle, which allow to explain the Einstein’s rules for the photoelectric effect.

Keywords

Continuous Spectrum Maxwell Equation Photoelectric Effect Maxwell Field Modify Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 2.
    M. Abraham, Theorie der Elektrizität, Bd. 2: Elektromagnetische Theorie der Strahlung (Teubner, Leipzig, 1905) Google Scholar
  2. 6.
    V. Bach, F. Klopp, H. Zenk, Mathematical analysis of the photoelectric effect. Adv. Theor. Math. Phys. 5(6), 969–999 (2001) MathSciNetMATHGoogle Scholar
  3. 7.
    R. Becker, Electromagnetic Fields and Interactions, Vol. I, II: Quantum Theory of Atoms and Radiation (Blaisdell, Boston, 1964) Google Scholar
  4. 20.
    M. Born, Atomic Physics (Blackie, London, 1951) MATHGoogle Scholar
  5. 35.
    O. Costin, R.D. Costin, J.L. Lebowitz, A. Rokhlenko, Evolution of a model quantum system under time periodic forcing: conditions for complete ionization. Commun. Math. Phys. 221(1), 1–26 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 36.
    O. Costin, R.D. Costin, J.L. Lebowitz, Time asymptotics of the Schrödinger wave function in time-periodic potentials. J. Stat. Phys. 116(1–4), 283–310 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 37.
    O. Costin, J.L. Lebowitz, C. Stucchio, Ionization in a 1-dimensional dipole model. Rev. Math. Phys. 20(7), 835–872 (2008) MathSciNetMATHCrossRefGoogle Scholar
  8. 38.
    O. Costin, J.L. Lebowitz, C. Stucchio, S. Tanveer, Exact results for ionization of model atomic systems. J. Math. Phys. 51(1), 015211 (2010) MathSciNetADSCrossRefGoogle Scholar
  9. 76.
    M. Griesemer, H. Zenk, On the atomic photoeffect in non-relativistic QED. arXiv:0910.1809
  10. 111.
    A. Komech, H. Spohn, Long-time asymptotics for the coupled Maxwell–Lorentz equations. Commun. Partial Differ. Equ. 25, 558–585 (2000) MathSciNetCrossRefGoogle Scholar
  11. 121.
    H.A. Kramers, The quantum theory of dispersion. Nature 113, 673–676 (1924) [pp. 177–180 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] ADSCrossRefGoogle Scholar
  12. 122.
    H.A. Kramers, The law of dispersion and Bohr’s theory of spectra. Nature 114, 310–311 (1924) [pp. 199–202 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] ADSCrossRefGoogle Scholar
  13. 123.
    H.A. Kramers, W. Heisenberg, Über die Streuung von Strahlen durch Atome. Z. Phys. 31, 681–708 (1925) [English translation: On the dispersion of radiation by atoms, pp. 223–252 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] ADSMATHCrossRefGoogle Scholar
  14. 124.
    H.A. Kramers, in La diffusion de la lumiere par les atomes, Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress) (1927), pp. 545–557 Google Scholar
  15. 125.
    R.L. Kronig, On the theory of the dispersion of X-rays. J. Opt. Soc. Am. 12, 547–557 (1926). doi: 10.1364/JOSA.12.000547 ADSCrossRefGoogle Scholar
  16. 126.
  17. 156.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics (Academic Press, New York, 1980), II (1975), III (1979), IV (1978) MATHGoogle Scholar
  18. 157.
    A. Rokhlenko, O. Costin, J.L. Lebowitz, Decay versus survival of a localized state subjected to harmonic forcing: exact results. J. Phys. A, Math. Gen. 35(42), 8943–8951 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  19. 171.
    A. Sommerfeld, Atombau und Spektrallinien, Vol. I and II (Vieweg, Braunschweig, 1951) Google Scholar
  20. 174.
    A. Sommerfeld, G. Schur, Ann. Phys. 4, 409 (1930) MATHCrossRefGoogle Scholar
  21. 190.
    G. Wentzel, Z. Phys. 43(1), 779 (1927) ADSMATHCrossRefGoogle Scholar
  22. 197.
    H. Zenk, Ionisation by quantised electromagnetic fields: the photoelectric effect. Rev. Math. Phys. 20, 367–406 (2008) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alexander Komech
    • 1
  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations