Advertisement

Abstract

Here we collect classical calculations lying in the ground of the ‘old quantum mechanics’: the Kepler problem, the Bohr–Sommerfeld quantization, electromagnetic plane waves, the Lorentz theory of polarization and dispersion, the normal Zeeman effect, diamagnetism and paramagnetism, and the Landé factor. Finally, we present the Heisenberg quantization of harmonic oscillator.

Keywords

Angular Momentum Harmonic Oscillator Orbital Angular Momentum Vector Model Gyromagnetic Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 7.
    R. Becker, Electromagnetic Fields and Interactions, Vol. I, II: Quantum Theory of Atoms and Radiation (Blaisdell, Boston, 1964) Google Scholar
  2. 20.
    M. Born, Atomic Physics (Blackie, London, 1951) zbMATHGoogle Scholar
  3. 93.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999) zbMATHGoogle Scholar
  4. 121.
    H.A. Kramers, The quantum theory of dispersion. Nature 113, 673–676 (1924) [pp. 177–180 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] ADSCrossRefGoogle Scholar
  5. 122.
    H.A. Kramers, The law of dispersion and Bohr’s theory of spectra. Nature 114, 310–311 (1924) [pp. 199–202 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] ADSCrossRefGoogle Scholar
  6. 123.
    H.A. Kramers, W. Heisenberg, Über die Streuung von Strahlen durch Atome. Z. Phys. 31, 681–708 (1925) [English translation: On the dispersion of radiation by atoms, pp. 223–252 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] ADSzbMATHCrossRefGoogle Scholar
  7. 124.
    H.A. Kramers, in La diffusion de la lumiere par les atomes, Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress) (1927), pp. 545–557 Google Scholar
  8. 125.
    R.L. Kronig, On the theory of the dispersion of X-rays. J. Opt. Soc. Am. 12, 547–557 (1926). doi: 10.1364/JOSA.12.000547 ADSCrossRefGoogle Scholar
  9. 126.
  10. 128.
    A. Landé, Z. Phys. 5, 5 (1921) Google Scholar
  11. 156.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics (Academic Press, New York, 1980), II (1975), III (1979), IV (1978) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alexander Komech
    • 1
  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations