Advertisement

Mathematical Appendices

  • Alexander Komech

Abstract

The Lagrangian and Hamiltonian formalism provide a unifying language for modern field theory.

The Hamilton–Jacobi theory and geometrical optics are considered as one of the main issues for the introduction of the Schrödinger equation and quantum observables.

We give an updated version of Noether’s theorem on currents and give its applications to the conservation laws for the Schrödinger equation and to the charge continuity.

The limiting amplitude principle provides an explanation of the photoelectric effect.

Keywords

Lagrangian Density Geometrical Optic Maxwell Field Extended Phase Space Angular Momentum Conservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 3.
    S. Agmon, Spectral properties of Schrödinger operator and scattering theory. Ann. Sc. Norm. Super. Pisa, Ser. IV 2, 151–218 (1975) MathSciNetzbMATHGoogle Scholar
  2. 4.
    V. Arnold, Mathematical Methods of Classical Mechanics (Springer, Berlin, 1978) zbMATHGoogle Scholar
  3. 55.
    D.M. Eidus, The principle of limit amplitude. Russ. Math. Surv. 24(3), 97–167 (1969) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 56.
    D.M. Eidus, The limiting amplitude principle for the Schrödinger equation in domains with unbounded boundaries. Asymptot. Anal. 2(2), 95–99 (1989) MathSciNetzbMATHGoogle Scholar
  5. 70.
    I. Gelfand, S. Fomin, Calculus of Variations (Dover, Mineola, 2000) zbMATHGoogle Scholar
  6. 73.
    H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, 1980) zbMATHGoogle Scholar
  7. 78.
    V. Guillemin, S. Sternberg, Geometric Asymptotics (American Mathematical Society, Providence, 1977) zbMATHGoogle Scholar
  8. 97.
    A. Jensen, T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46, 583–611 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 116.
    A. Komech, E. Kopylova, Dispersion Decay (Wiley, New York, 2012). http://www.mat.univie.ac.at/~komech/ zbMATHGoogle Scholar
  10. 119.
    A. Komech, E. Kopylova, Dispersion Decay and Scattering Theory (Wiley, Hoboken, 2012) zbMATHCrossRefGoogle Scholar
  11. 129.
    C. Lanczos, The Variational Principles of Mechanics (University of Toronto Press, Toronto, 1970) zbMATHGoogle Scholar
  12. 132.
    P.D. Lax, Asymptotic solutions of oscillatory initial value problems. Duke Math. J. 24, 627–646 (1957) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 146.
    E. Noether, Gesammelte Abhandlungen. Collected Papers (Springer, Berlin, 1983) zbMATHGoogle Scholar
  14. 149.
    W. Pauli, Diracs Wellengleichungen des Elektrons und geometrische Optik. Helv. Phys. Acta 5, 179–199 (1932) Google Scholar
  15. 163.
    F. Schwabl, Advanced Quantum Mechanics (Springer, Berlin, 1997) zbMATHGoogle Scholar
  16. 164.
    M.A. Shubin, Pseudodifferential Operators and Spectral Theory (Springer, Berlin, 2001) zbMATHCrossRefGoogle Scholar
  17. 186.
    B.R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics (Gordon and Breach, New York, 1989) zbMATHGoogle Scholar
  18. 194.
    E. Zeidler, Applied Functional Analysis. Main Principles and Their Applications. Applied Mathematical Sciences, vol. 109 (Springer, Berlin, 1995) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alexander Komech
    • 1
  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations