Advertisement

Genesis of Quantum Mechanics

  • Alexander Komech

Abstract

Quantum mechanics rests on the centuries-long development of the theory of structure and stability of matter. The development of quantum mechanics is supposed to have started with the concept of atom, and further progressed in parallel with the development of chemistry, mechanics, optics and electrodynamics. As long ago as at the end of the 19th century, the atoms were already considered as vibrating systems composed of positive and negative charged particles. However, the pure electromagnetic theory of atom stability turned out to be inconsistent, and the key ideas came from the thermodynamics of radiation.

The fundamental principles of quantum mechanics can be perceived only from systematic analysis of empirical observations and their theoretic classification. We begin with early discoveries in chemistry and in spectral observations, Thomson’s discovery of the electron, Lorentz’s electron theory, and Abraham’s mass-energy identification.

Further we dwell upon Kirchhoff’s laws of radiation, Rayleigh–Jeans’s and Planck’s theories of black-body radiation, and the ‘old’ quantum mechanics of Niels Bohr. Next we show how these achievements emerged in the development of Heisenberg’s matrix theory of quantum mechanics, de Broglie’s wave–particle dualism and the generalizations thereof by Schrödinger.

Finally, we describe the quasiclassical asymptotics (‘geometrical optics’) for short-wavelength solutions of the Schrödinger equation, which provides a ‘bridge’ between the quantum and classical description of matter.

Keywords

Correspondence Principle Maxwell Field Combination Principle Maxwell Electrodynamic Planck Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 1.
    M. Abraham, Dynamik des Elektrons. Phys. Z. 4, 57–63 (1902); G tt. Nachr., 20-41, 1902 zbMATHGoogle Scholar
  2. 2.
    M. Abraham, Theorie der Elektrizität, Bd. 2: Elektromagnetische Theorie der Strahlung (Teubner, Leipzig, 1905) Google Scholar
  3. 7.
    R. Becker, Electromagnetic Fields and Interactions, Vol. I, II: Quantum Theory of Atoms and Radiation (Blaisdell, Boston, 1964) Google Scholar
  4. 15.
    N. Bohr, Philos. Mag. 26, 1; 476; 857 (1913) zbMATHCrossRefGoogle Scholar
  5. 16.
    N. Bohr, K. Dan. Vidensk. Selsk. Skr., Nat.vidensk. Math. Afd. 8. Raekke IV.1, 1–3 (1918) [English translation: On the quantum theory of line spectra, pp. 95–138 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] MathSciNetGoogle Scholar
  6. 17.
    L. Boltzman, Vorlesungen über Gastheory (Barth, Leipzig, 1896) (Part I), 1898 (Part II) Google Scholar
  7. 40.
    C. Davisson, L. Germer, Nature 119, 558 (1927) ADSCrossRefGoogle Scholar
  8. 42.
    P. Debye, Zur Theorie der spezifischen Waerme. Ann. Phys. (Leipz.) 39(4), 789 (1912) ADSzbMATHCrossRefGoogle Scholar
  9. 43.
    P.A.M. Dirac, Proc. R. Soc. A 112, 661 (1926) ADSzbMATHCrossRefGoogle Scholar
  10. 53.
    T. Dudnikova, A. Komech, H. Spohn, Energy-momentum relation for solitary waves of relativistic wave equation. Russ. J. Math. Phys. 9(2), 153–160 (2002) MathSciNetzbMATHGoogle Scholar
  11. 57.
    A. Einstein, Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann. Phys. (4) 22, 180–190 (1907) [English translation: Planck’s theory and the theory of specific heat. CPAE, vol. 2, Doc. 38] zbMATHGoogle Scholar
  12. 58.
    A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (Concerning the generation and transformation of light as seen from a heuristic point of view), in Annalen der Physik, March 18, 1905 Google Scholar
  13. 59.
    A. Einstein, Planck’s theory of radiation and the theory of specific heat. Ann. Phys. (4) 22, 180–190 (1906) CrossRefGoogle Scholar
  14. 63.
    R. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. I, II, III (Addison-Wesley, Reading, 1964) Google Scholar
  15. 65.
  16. 69.
    M. Gardner, The New Ambidextrous Universe. Symmetry and Asymmetry from Mirror Reflections to Superstrings (Freeman, New York, 1990) Google Scholar
  17. 90.
    L. Houllevigue, L’Évolutlon des Sciences (Collin, Paris, 1908) Google Scholar
  18. 98.
    W. Kauffmann, Ann. Phys. 61, 544 (1897) CrossRefGoogle Scholar
  19. 99.
    G. Kirchhoff, Poggendorff’s Ann. 59, 275 (1860) [English translation: On the relation between the radiating and absorbing powers of different bodies for light and heat, Philos. Mag. Ser. 4 20(130), 1–21 (1860)] CrossRefGoogle Scholar
  20. 112.
    A. Komech, H. Spohn, M. Kunze, Long-time asymptotics for a classical particle interacting with a scalar wave field. Commun. Partial Differ. Equ. 22, 307–335 (1997) MathSciNetzbMATHGoogle Scholar
  21. 121.
    H.A. Kramers, The quantum theory of dispersion. Nature 113, 673–676 (1924) [pp. 177–180 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] ADSCrossRefGoogle Scholar
  22. 122.
    H.A. Kramers, The law of dispersion and Bohr’s theory of spectra. Nature 114, 310–311 (1924) [pp. 199–202 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] ADSCrossRefGoogle Scholar
  23. 123.
    H.A. Kramers, W. Heisenberg, Über die Streuung von Strahlen durch Atome. Z. Phys. 31, 681–708 (1925) [English translation: On the dispersion of radiation by atoms, pp. 223–252 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] ADSzbMATHCrossRefGoogle Scholar
  24. 127.
    R. Ladenburg, Die quantentheoretische Zahl der Dispersionelektronen. Z. Phys. 4, 451–468 (1921) [English translation: The quantum-theoretical interpretation of the number of dispersion electrons, pp. 139–158 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967] ADSCrossRefGoogle Scholar
  25. 136.
    H.A. Lorentz, The theory of electrons and its applications to the phenomena of light and radiant heat. Lectures from a course held at Columbia University, New York, NY, USA, March and April 1906, Repr. of the 2nd ed., Sceaux: Éditions Jacques Gabay (1992) Google Scholar
  26. 139.
  27. 141.
  28. 144.
    R. Newburgh, J. Peidle, W. Rueckner, Einstein, Perrin, and the reality of atoms: 1905 revisited. Am. J. Phys. 74(6), 478–481 (2006). www.ias.u-psud.fr/medoc-OLD/BOUDINE/presentations/EPA%205.doc CrossRefGoogle Scholar
  29. 147.
    W. Pauli, Quantentheorie, in Handbuch der Physik, vol. 23, ed. by H. Geiger, K. Scheel (Springer, Berlin, 1926), pp. 1–278 Google Scholar
  30. 152.
    J. Perrin, New experiments on the cathode rays. Nature 53, 298–299 (1896). http://www.chemteam.info/Chem-History/Perrin-1895.html CrossRefGoogle Scholar
  31. 154.
    M. Planck, Über eine Verbesserung der wienschen Spektralgleichung. Verh. Dtsch. Phys. Ges. 2, 202–204 (1967) [English translation: On an improvement of Wien’s equation for the spectrum, pp. 79–81 in: D. ter-Haar, The Old Quantum Theory, Pergamon, Oxford, 1967]. http://www.ffn.ub.es/luisnavarro/nuevo_maletin/Planck%20%281900%29,%20Improvement%20of%20Wien%27s.pdf Google Scholar
  32. 155.
    M. Planck, The Theory of Heat Radiation (Blakiston’s, London, 1914) Google Scholar
  33. 165.
    W.H. Slabaugh, Determination of Avogadro’s number by Perrin’s law. J. Chem. Educ. 42(9), 471–472 (1965). http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_74/iss_6/478_1.html CrossRefGoogle Scholar
  34. 172.
    A. Sommerfeld, Thermodynamics and Statistical Mechanics. Lectures on Theoretical Physics, vol. V (Academic Press, New York, 1956) zbMATHGoogle Scholar
  35. 177.
    N. Straumann, On the first solvay congress in 1911. arXiv:1109.3785
  36. 182.
    J.J. Thomson, Philos. Mag. 44, 298 (1897) Google Scholar
  37. 183.
  38. 188.
    B.L. van der Waerden (ed.), Sources in Quantum Mechanics (North-Holland, Amsterdam, 1967) Google Scholar
  39. 192.
    E. Whittaker, A History of the Theories of Aether and Electricity, vol. 1 (Nelson, London, 1951) zbMATHGoogle Scholar
  40. 193.

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alexander Komech
    • 1
  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations