DNA Replication and Repair in Halophiles

Chapter

Abstract

The natural environment inhabited by halophiles results in continual exposure of these organisms to elevated temperatures, fluctuations in oxygen and nutrient concentrations, high levels of solar radiation, and periodic desiccation. Exposure to these conditions results in extensive DNA damage that must be repaired to maintain genomic fidelity and cellular viability. At the same time, DNA replication needs to be highly accurate to prevent the accumulation of mutation and its deleterious effects on the cell’s survival. These processes must also allow for errors to generate the diversity required for Darwinian evolution. Studies of DNA replication and repair mechanisms in halophilic archaea, using a combination of biochemical and genetic approaches, have shown to date that these mechanisms bear a great many similarities to their non-halophilic counterparts. An important finding, however, is that the archaeal proteins involved in these processes do not represent a reduce repertoire of eukaryotic proteins but are rather a mosaic of eukaryal and bacterial systems with archaeal-specific features.

References

  1. Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118PubMedGoogle Scholar
  2. Allers T, Ngo HP (2003) Genetic analysis of homologous recombination in Archaea: Haloferax volcanii as a model organism. Biochem Soc Trans 31:706–710PubMedGoogle Scholar
  3. Allers T, Barak S, Liddell S, Wardell K, Mevarech M (2010) Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl Environ Microbiol 76:1759–1769PubMedGoogle Scholar
  4. Altshuler M (1993) Recovery of DNA replication in UV-damaged Escherichia coli. Mutation Research/DNA Repair 294:91–100Google Scholar
  5. Asgarani E, Funamizu H, Saito T, Terato H, Ohyama Y, Yamamoto O, Ide H (1999) Mechanisms of DNA protection in Halobacterium salinarium, an extremely halophilic bacterium. Microbiol Res 154:185–190Google Scholar
  6. Assenmacher N, Hopfner K (2004) Mre11/Rad50/Nbs1: Complex activities. Chromosoma 113:157–166PubMedGoogle Scholar
  7. Aylon Y, Kupiec M (2004) DSB repair: the yeast paradigm. DNA Repair (Amst) 3:797–815Google Scholar
  8. Bakke P, Carney N, Deloache W et al (2009) Evaluation of three automated genome annotations for Halorhabdus utahensis. PLoS ONE 4:e6291Google Scholar
  9. Baliga N, Bjork S, Bonneau R et al (2004a) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035Google Scholar
  10. Baliga NS, Bonneau R, Facciotti MT et al (2004b) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234Google Scholar
  11. Barry ER, Bell SD (2006) DNA replication in the archaea. Microbiol Mol Biol Rev 70:876–887PubMedGoogle Scholar
  12. Berquist BR, DasSarma S (2003) An archaeal chromosomal autonomously replicating sequence element from an extreme halophile, Halobacterium sp. Strain NRC-1. J. Bacteriol 185: 5959-5966Google Scholar
  13. Berquist BR, DasSarma P, DasSarma S (2007) Essential and non-essential DNA replication genes in the model halophilic archaeon, Halobacterium sp. NRC-I. BMC Genetics 8:31Google Scholar
  14. Blaisdell JO, Wallace SS (2001) Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli. Proc Natl Acad Sci USA 98:7426–7430PubMedGoogle Scholar
  15. Bochman ML, Schwacha A (2009) The MCM complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 73:652–683PubMedGoogle Scholar
  16. Bolhuis H, Palm P, Wende A et al (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169PubMedGoogle Scholar
  17. Boubriak I, Ng WL, DasSarma P, DasSarma S, Crowley DJ, McCready SJ (2008) Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1. Saline Syst 4:13PubMedGoogle Scholar
  18. Breuert S, Allers T, Spohn G, Soppa J (2006) Regulated polyploidy in halophilic archaea. PLoS ONE 1:e92Google Scholar
  19. Brill SJ, Stillman B (1991) Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5:1589–1600PubMedGoogle Scholar
  20. Bugreev DV, Mazina OM, Mazin AV (2006) Rad54 protein promotes branch migration of Holliday junctions. Nature 442:590–593PubMedGoogle Scholar
  21. Busch CR, Diruggiero J (2010) MutS and MutL are dispensable for maintenance of the genomic mutation rate in the halophilic archaeon Halobacterium salinarum NRC-1. PLoS ONE 5:e9045Google Scholar
  22. Butala M, Žgur-Bertok D, Busby S (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66:82–93PubMedGoogle Scholar
  23. Cadet J, Bourdat A, D’Ham C, Duarte V, Gasparutto D, Romieu A, Ravanat J (2000) Oxidative base damage to DNA: specificity of base excision repair enzymes. Mutat Res 462:121–128PubMedGoogle Scholar
  24. Cannio R, Fiorentino G, Morana A, Rossi M, Bartolucci S (2000) Oxygen: friend or foe? Archaeal superoxide dismutases in the protection of intra-and extracellular oxidative stress. Front Biosci 5:D768-D779PubMedGoogle Scholar
  25. Capes MD, Coker JA, Gessler R et al (2011) The information transfer system of halophilic archaea. Plasmid 65:77–101PubMedGoogle Scholar
  26. Carbonneau MA, Melin AM, Perromat A, Clerc M (1989) The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys 275:244–251PubMedGoogle Scholar
  27. Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell JL, Kowalczykowski SC (2010) DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467:112–116PubMedGoogle Scholar
  28. Chapados BR, Hosfield DJ, Han S, Qiu J, Yelent B, Shen B, Tainer JA (2004) Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell 116:39–50PubMedGoogle Scholar
  29. Chen YH, Kocherginskaya SA, Lin Y et al (2005) Biochemical and mutational analyses of a unique clamp loader complex in the archaeon Methanosarcina acetivorans. J.Biol Chem 280:41852–41863PubMedGoogle Scholar
  30. Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B (2000) A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci USA 97:1530–1535PubMedGoogle Scholar
  31. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204PubMedGoogle Scholar
  32. Cockell C, Catling D, Davis W, Snook K, Kepner R, Lee P, McKay C (2000) The ultraviolet environment of Mars: biological implications past, present, and future. Icarus 146:343–359PubMedGoogle Scholar
  33. Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev Cambridge Philos Soc 74:311–345PubMedGoogle Scholar
  34. Coker J, DasSarma P, Kumar J, Müller J, DasSarma S (2007) Transcriptional profiling of the model archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature. Saline Syst 3:6PubMedGoogle Scholar
  35. Constantinesco F, Forterre P, Elie C (2002) NurA, a novel 5′-3′ nuclease gene linked to rad50 and mre11 homologs of thermophilic Archaea. EMBO Rep 3:537–542PubMedGoogle Scholar
  36. Constantinesco F, Forterre P, Koonin EV, Aravind L, Elie C (2004) A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res 32:1439–1447PubMedGoogle Scholar
  37. Cox MM (2001) Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu Rev Genet 35:53–82PubMedGoogle Scholar
  38. Crowley D, Boubriak I, Berquist B et al (2006) The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. Saline Syst 2:11PubMedGoogle Scholar
  39. da Costa M, Santos H, Galinski E (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153PubMedGoogle Scholar
  40. Daly MJ, Gaidamakova EK, Matrosova VY et al (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028PubMedGoogle Scholar
  41. Daly MJ, Gaidamakova EK, Matrosova VY et al (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92Google Scholar
  42. Daly M, Gaidamakova E, Matrosova V et al (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS ONE 5:e12570Google Scholar
  43. DasSarma S, Kennedy S, Berquist B, Victor Ng W, Baliga NS, Spudich JL, Krebs MP, Eisen JA, Johnson CH,, Hood L (2001) Genomic perspective on the photobiology of Halobacterium sp. NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. Photosynth Res 70:3–17PubMedGoogle Scholar
  44. Deisenhofer J (2000) DNA photolyases and cryptochromes. Mutat Res 460:143–149PubMedGoogle Scholar
  45. Delmas S, Shunburne L, Ngo H, Allers T (2009) Mre11-Rad50 promotes rapid repair of dna damage in the polyploid archaeon Haloferax volcanii by restraining homologous recombination. PLoS Genet 5:e1000552Google Scholar
  46. DeVeaux LC, ller JA, Smith J, Petrisko J, Wells DP, DasSarma S (2007) Extremely radiation-resistant mutants of a halophilic archaeon with increased single-strand DNA-binding protein (RPA) gene expression. Radiation Research 168:507–514PubMedGoogle Scholar
  47. Dianov GL, O’Neill P, Goodhead DT (2001) Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. Bioessays 23:745–749PubMedGoogle Scholar
  48. Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD (2003) A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 11:275–282PubMedGoogle Scholar
  49. Dizdaroglu M (2003) Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage. Mutat Res 531:109–126PubMedGoogle Scholar
  50. Dose K, Bieger-Dose A, Labusch M, Gill M (1992) Survival in extreme dryness and DNA-single-strand breaks. Adv Space Res 12:221–229PubMedGoogle Scholar
  51. Dueber EC, Costa A, Corn JE, Bell SD, Berger JM (2011) Molecular determinants of origin discrimination by Orc1 initiators in archaea. Nucleic Acids Res 39:3621–3631PubMedGoogle Scholar
  52. Dundas I, Larsen H (1962) The physiological role of the carotenoid pigments of Halobacterium salinarium. Arch Microbiol 44:233–239Google Scholar
  53. Dyall-Smith M (2009) The Halohandbook—Protocols for haloarchaeal genetics. Available at http://www.haloarchaea.com/resources/halohandbook/index.htmlAccessed 30 Oct. 2012.
  54. Eker AP, Kooiman P, Hessels JK, Yasui A (1990) DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J Biol Chem 265:8009–8015PubMedGoogle Scholar
  55. Engel MB, Catchpole HR (2005) A microprobe analysis of inorganic elements in Halobacterium salinarum. Cell Biol Int 29:616–622PubMedGoogle Scholar
  56. Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15:1336–1343PubMedGoogle Scholar
  57. Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effects of simulated martian ultraviolet radiation onHalococcus dombrowskiiand other extremely halophilic Archaebacteria. Astrobiology 9:104–112PubMedGoogle Scholar
  58. Fitt PS, Sharma N, Castellanos G (1983) A comparison of liquid-holding recovery and photoreactivation in halophilic and non-halophilic bacteria. Biochim Biophys Acta 739:73–78PubMedGoogle Scholar
  59. Friedberg EC, Walker GC, Siede W, Wood R, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM, Washington, DCGoogle Scholar
  60. Fujikane R, Komori K, Shinagawa H, Ishino Y (2005) Identification of a novel helicase activity unwinding branched DNAs from the hyperthermophilic archaeon, Pyrococcus furiosus. J Biol Chem 280:12351–12358PubMedGoogle Scholar
  61. Fujikane R, Ishino S, Ishino Y (2010) Genetic analysis of DNA repair in the hyperthermophilic archaeon, Thermococcus kodakaraensis. Genes Genet Syst 85:243–257PubMedGoogle Scholar
  62. Garcia-Estepa R, Argandona M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ, Vargas C (2006) The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol 188:3774–3784PubMedGoogle Scholar
  63. Grabowski B, Kelman Z (2003) Archaeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microb 57:487–516Google Scholar
  64. Grant W, Gemmell R, McGenity T (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287PubMedGoogle Scholar
  65. Grey VL, Fitt PS (1976) Evidence for the lack of deoxyribonucleic acid dark-repair in Halobacterium cutirubrum. Biochem J 156:569–575PubMedGoogle Scholar
  66. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse H, Stan-Lotter H (2004) Halobacterium noricense sp. nov an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8:431-439PubMedGoogle Scholar
  67. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521PubMedGoogle Scholar
  68. Gusev O, Nakahara Y, Vanyagina V et al (2010) Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chironomid: linkage with radioresistance. PLoS ONE 5:e14008Google Scholar
  69. Guy C, Bolt E (2005) Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res 33:3678PubMedGoogle Scholar
  70. Guy C, Haldenby S, Brindley A et al (2006) Interactions of RadB, a DNA repair protein in archaea, with DNA and ATP. J Mol Biol 358:46–56PubMedGoogle Scholar
  71. Haldenby S, White MF, Allers T (2009) RecA family proteins in archaea: RadA and its cousins. Biochem Soc Trans 37:102–107PubMedGoogle Scholar
  72. Hartman AL, Norais C, Badger JH et al (2010) The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS ONE 5:e9605Google Scholar
  73. Hescox MA, Carlberg DM (1972) Photoreactivation in Halobacterium cutirubrum. Can J Microbiol 18(7):981–985PubMedGoogle Scholar
  74. Heyer W, Ehmsen K, Solinger J (2003) Holliday junctions in the eukaryotic nucleus: resolution in sight? Trends Biochem Sci 28:548–557PubMedGoogle Scholar
  75. Hopfner KP, Craig L, Moncalian G et al (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566PubMedGoogle Scholar
  76. Hopkins B, Paull T (2008) The Pyrococcus furiosus Mre11/Rad50 complex promotes 5′ strand resection at a DNA double-strand break. Cell 135:250–260PubMedGoogle Scholar
  77. Huertas P (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17:11–16PubMedGoogle Scholar
  78. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418PubMedGoogle Scholar
  79. Imshenetsky AA, Kouzyurina LA, Jakshina VM (1973) On the multiplication of xerophilic micro-organisms under simulated Martian conditions. Life Sci Space Res 11:63–66PubMedGoogle Scholar
  80. Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA +ATPases. J Struct Biol 146:11–31PubMedGoogle Scholar
  81. Janion C (2008) Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int J Biol Sci 4:338–344PubMedGoogle Scholar
  82. Jékely G (2009) Evolution of phototaxis. Phil Trans R Soc B Biol Sci 364:2795Google Scholar
  83. Jeruzalmi D, O’Donnell M, Kuriyan J (2002) Clamp loaders and sliding clamps. Curr Opin Struct Biol 12:217–224PubMedGoogle Scholar
  84. Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854PubMedGoogle Scholar
  85. Kaur A, Van P, Busch C et al (2010) Coordination of frontline defense mechanisms under severe oxidative stress. Mol Syst Biol 6:393PubMedGoogle Scholar
  86. Kerfeld CA (2004) Water-soluble carotenoid proteins of cyanobacteria. Arch Biochem Biophys 430:2–9PubMedGoogle Scholar
  87. Keyer K, Gort A, Imlay J (1995) Superoxide and the production of oxidative DNA damage. J Bacteriol 177:6782–6790PubMedGoogle Scholar
  88. Kish A, Diruggiero J (2008) Rad50 is not essential for the Mre11-dependent repair of DNA double-strand breaks in Halobacterium sp. strain NRC-1. J Bacteriol 190:5210–5216PubMedGoogle Scholar
  89. Kish A, Kirkali G, Robinson C, Rosenblatt R, Jaruga P, Dizdaroglu M, DiRuggiero J (2009) Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol 11:1066–1078PubMedGoogle Scholar
  90. Kminek G, Bada JL, Pogliano K, Ward JF (2003) Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiat Res 159:722–729PubMedGoogle Scholar
  91. Kolbe M, Besir H, Essen L, Oesterhelt D (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288:1390–1393PubMedGoogle Scholar
  92. Komori K, Hidaka M, Horiuchi T, Fujikane R, Shinagawa H, Ishino Y (2004) Cooperation of the N-terminal helicase and C-terminal endonuclease activities of archaeal Hef protein in processing stalled replication forks. J Biol Chem 279:53175–53185PubMedGoogle Scholar
  93. Komori K, Miyata T, Daiyasu H, Toh H, Shinagawa H, Ishino Y (2000a) Domain analysis of an archaeal RadA protein for the strand exchange activity. J Biol Chem 275:33791–33797Google Scholar
  94. Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann IKO, Mayanagi K, Shinagawa H, Ishino Y (2000b) Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 275:33782–33790Google Scholar
  95. Kottemann M, Kish A, Iloanusi C, Bjork S, Diruggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227PubMedGoogle Scholar
  96. Kowalczykowski S, Dixon D, Eggleston A, Lauder S, Rehrauer W (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Mol Biol Rev 58:401–465Google Scholar
  97. Krogh B, Symington L (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271PubMedGoogle Scholar
  98. Kushwaha SC, Kramer JK, Kates M (1975) Isolation and characterization of C50-carotenoid pigments and other polar isoprenoids from Halobacterium cutirubrum. Biochim Biophys Acta 398:303–314PubMedGoogle Scholar
  99. Lamarche BJ, Orazio NI, Weitzman MD (2010) The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 584:3682–3695PubMedGoogle Scholar
  100. Lange C, Zaigler A, Hammelmann M et al (2007) Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea. BMC Genomics 8:415PubMedGoogle Scholar
  101. Latifi A, Ruiz M, Zhang C-C (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278PubMedGoogle Scholar
  102. Leigh JA, Albers SV, Atomi H, Allers T (2011) Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35:577–608PubMedGoogle Scholar
  103. Lestini R, Duan Z, Allers T (2010) The archaeal Xpf/Mus81/FANCM homolog Hef and the Holliday junction resolvase Hjc define alternative pathways that are essential for cell viability in Haloferax volcanii. DNA Repair 9:994–1002PubMedGoogle Scholar
  104. Leuko S, Raftery MJ, Burns BP, Walter MR, Neilan BA (2009) Global protein-level responses of Halobacterium salinarum NRC-1 to prolonged changes in external sodium chloride concentrations. J Prot Res 8:2218–2225Google Scholar
  105. Leuko S, Neilan BA, Burns BP, Walter MR, Rothschild LJ (2010) Molecular assessment of UVC radiation-induced DNA damage repair in the stromatolitic halophilic archaeon, Halococcus hamelinensis. J Photochem Photobiol B Biol 102:140–145Google Scholar
  106. Levine E, Thiel T (1987) UV-inducible DNA repair in the cyanobacteria Anabaena spp. J Bacteriol 169:3988–3993PubMedGoogle Scholar
  107. Li X, Heyer W (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113PubMedGoogle Scholar
  108. Li Z, Lu S, Hou G, Ma X, Sheng D, Ni J, Shen Y (2008) Hjm/Hel308A DNA helicase from Sulfolobus tokodaii promotes replication fork regression and interacts with Hjc endonuclease in vitro. J Bacteriol 190:3006–3017PubMedGoogle Scholar
  109. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211PubMedGoogle Scholar
  110. Lutnaes B, Oren A, Liaaen-Jensen S (2002) New C40-carotenoid acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343PubMedGoogle Scholar
  111. MacNeill SA (2009) The haloarchaeal chromosome replication machinery. Biochem Soc Trans 37:108–113PubMedGoogle Scholar
  112. MacNeill SA (2010) Structure and function of the GINS complex, a key component of the eukaryotic replisome. Biochem J 425:489–500PubMedGoogle Scholar
  113. Malfatti S, Tindall BJ, Schneider S et al (2009) Complete genome sequence of Halogeometricum borinquense type strain (PR3). Stand Genomic Sci 1:150–159PubMedGoogle Scholar
  114. Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD (2006) GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep 7:539–545PubMedGoogle Scholar
  115. Martin EL, Reinhardt RL, Baum LL, Becker MR, Shaffer JJ, Kokjohn TA (2000) The effects of ultraviolet radiation on the moderate halophile Halomonas elongata and the extreme halophile Halobacterium salinarum. Can J Microbiol 46(2):180–187Google Scholar
  116. Matsumiya S, Ishino Y, Morikawa K (2001) Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci 10:17–23PubMedGoogle Scholar
  117. Matsunaga F, Forterre P, Ishino Y, Myllykallio H (2001) In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci USA 20:11152–11157Google Scholar
  118. Matsunaga F, Glatigny A, Mucchielli-Giorgi M-H et al (2007) Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp. Nucl Acids Res 35:3214–3222PubMedGoogle Scholar
  119. Matsunaga F, Takemura K, Akita M, Adachi A, Yamagami T, Ishino Y (2010) Localized melting of duplex DNA by Cdc6/Orc1 at the DNA replication origin in the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 14:21–31PubMedGoogle Scholar
  120. Mattimore V, Battista J (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637PubMedGoogle Scholar
  121. McCready S (1996) The repair of ultraviolet light-induced DNA damage in the halophilic archaebacteria, Halobacterium cutirubrum, Halobacterium halobium and Haloferax volcanii. Mutat Res 364:25–32PubMedGoogle Scholar
  122. McCready S, Marcello L (2003) Repair of UV damage in Halobacterium salinarum. Biochem Soc Trans 31:694–698PubMedGoogle Scholar
  123. McCready S, Müller J, Boubriak I, Berquist B, Ng W, DasSarma S (2005) UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1. Saline Syst 1: 3PubMedGoogle Scholar
  124. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250PubMedGoogle Scholar
  125. Meslet-Cladiere L, Norais C, Kuhn J et al (2007) A novel proteomic approach identifies new interaction partners for proliferating cell nuclear antigen. J Mol Biol 372:1137–1148PubMedGoogle Scholar
  126. Michel B (2000) Replication fork arrest and DNA recombination. TIBS 25:173–178PubMedGoogle Scholar
  127. Mimitou E, Symington L (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770–774PubMedGoogle Scholar
  128. Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair 8:983–995PubMedGoogle Scholar
  129. Mimitou EP, Symington LS (2011) DNA end resection-Unraveling the tail. DNA Repair 10:344–348PubMedGoogle Scholar
  130. Mladenov E, Iliakis G (2011) Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 711:61–72PubMedGoogle Scholar
  131. Moeller R, Reitz G, Douki T, Cadet J, Horneck G, Stan-Lotter H (2010) UV photoreactions of the extremely haloalkaliphilic euryarchaeon Natronomonas pharaonis. FEMS Microbiol Ecol 73:271–277PubMedGoogle Scholar
  132. Molina-Höppner A, Doster W, Vogel RF, Gänzle MG (2004) Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl Environ Microbiol 70:2013–2020PubMedGoogle Scholar
  133. Mongodin EF, Nelson KE, Daugherty S et al (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152PubMedGoogle Scholar
  134. Morgunova E, Gray FC, Macneill SA, Ladenstein R (2009) Structural insights into the adaptation of proliferating cell nuclear antigen (PCNA) from Haloferax volcanii to a high-salt environment. Acta Cryst Section D Biol Cryst 65:1081–1088Google Scholar
  135. Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. Embo J 12:861–867PubMedGoogle Scholar
  136. Myllykallio H, Lopez P, Lopez-Garcia P et al (2000) Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288:2212–2215PubMedGoogle Scholar
  137. Ng WO, Pakrasi HB (2001) DNA photolyase homologs are the major UV resistance factors in the cyanobacterium Synechocystis sp. PCC 6803. Mol Gen Genet 264:924–930PubMedGoogle Scholar
  138. Ng WV, Kennedy SP, Mahairas GG et al (2000) Genome sequence of Halobacterium sp. NRC-1. Proc Natl Acad Sci USA 97:12176–12181PubMedGoogle Scholar
  139. Nickle DC, Learn GH, Rain MW, Mullins JI, Mittler JE (2002) Curiously modern DNA for a “250 Million-Year-Old” bacterium. J Mol Evol 54:134–137PubMedGoogle Scholar
  140. Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K (2005) Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing. Structure 13:143–153PubMedGoogle Scholar
  141. Niu H, Chung W-H, Zhu Z et al (2010) Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467:108–111PubMedGoogle Scholar
  142. Norais C, Hawkins M, Hartman AL, Eisen JA, Myllykallio H, Allers T (2007) Genetic and physical mapping of dna replication origins in Haloferax volcanii. PLoS Genetics 3:e77Google Scholar
  143. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2PubMedGoogle Scholar
  144. Oren A, Bekhor B (1999) Tolerance of extremely halophilic archaebacteria towards bromide. Curr Microbiol 19:371–374Google Scholar
  145. Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10PubMedGoogle Scholar
  146. Oren A, Heldal M, Norland S, Galinski EA (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6:491–498PubMedGoogle Scholar
  147. Oren A, Larimer F, Richardson P, Lapidus A, Csonka LN (2005) How to be moderately halophilic with broad salt tolerance: clues from the genome of Chromohalobacter salexigens. Extremophiles 9:275–279PubMedGoogle Scholar
  148. Oyama T, Ishino S, Fujino S et al (2011) Architectures of archaeal GINS complexes, essential DNA replication initiation factors. BMC Biol 9:28PubMedGoogle Scholar
  149. Paques F, Haber J (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404PubMedGoogle Scholar
  150. Patel M, Bérces A, Kerékgyárto T, Rontó G, Lammer H, Zarnecki J (2004) Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv Space Res 33:1247–1252PubMedGoogle Scholar
  151. Poidevin L, MacNeill SA (2006) Biochemical characterisation of LigN, an NAD+-dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations. BMC Molecular Biology 7:44PubMedGoogle Scholar
  152. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805PubMedGoogle Scholar
  153. Raghunathan S, Kozlov AG, Lohman TM, Waksman G (2000) Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7:648–652PubMedGoogle Scholar
  154. Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010:592980PubMedGoogle Scholar
  155. Reardon J, Sancar A (2005) Nucleotide excision repair. Prog Nucleic Acid Res Mol Biol 79:183–235PubMedGoogle Scholar
  156. Regulus P, Duroux B, Bayle PA, Favier A, Cadet J, Ravanat JL (2007) Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion. Proc Natl Acad Sci USA 35:14032–14037Google Scholar
  157. Rieder R, Gellert R, Anderson RC et al (2004) Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science 306:1746–1749PubMedGoogle Scholar
  158. Riley P (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33PubMedGoogle Scholar
  159. Robbins JB, McKinney MC, Guzman CE, Sriratana B, Fitz-Gibbon S, Ha T, Cann IK (2005) The Euryarchaeota: nature’s medium for engineering of single-strand DNA binding proteins. J Biol Chem 280:15325–15339PubMedGoogle Scholar
  160. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1:5PubMedGoogle Scholar
  161. Robinson NP, Bell SD (2007) Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc Natl Acad Sci USA 104:5806–5811PubMedGoogle Scholar
  162. Robinson NP, Dionne I, Lundgren M, Marsh VL, Bernander R, Bell SD (2004) Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116:25–38PubMedGoogle Scholar
  163. Robinson C, Webb K, Kaur A, Jaruga P, Dizdaroglu M, Baliga NS, Place A, DiRuggiero J (2011) A major role for non-enzymatic antioxidant processes in the radioresistance of Halobacterium salinarum. J Bacteriol 193:1653–1662PubMedGoogle Scholar
  164. Rogozin IB, Makarova KS, Pavlov YI, Koonin EV (2008) A highly conserved family of inactivated archaeal B family DNA polymerases. Biol Direct 3:32PubMedGoogle Scholar
  165. Rupnik A, Grenon M, Lowndes N (2008) The MRN complex. Curr Biol 18:R455-R457PubMedGoogle Scholar
  166. Rupnik A, Lowndes N, Grenon M (2009) MRN and the race to the break. Chromosoma 119:115–135PubMedGoogle Scholar
  167. Sage E, Harrison L (2010) Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutat Res 711(1–2):123–133 (Epub 2010 Dec 24, Review 3 Jun 2011)Google Scholar
  168. Saito T, Miyabe Y, Ide H, Yamamoto O (1997) Hydroxyl radical scavening ability of bacterioruberin. Radiat Phys Chem 50:267–269Google Scholar
  169. Sakakibara N, Kelman LM, Kelman Z (2009) Unwinding the structure and function of the archaeal MCM helicase. Mol Microbiol 72:286–296PubMedGoogle Scholar
  170. Sancar A, Reardon JT, Wei Y (2004) nucleotide excision repair in E. coli and man. Adv Prot Chem 69:43–71.Google Scholar
  171. Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509PubMedGoogle Scholar
  172. Saunders E, Tindall BJ, Fahnrich R et al (2010) Complete genome sequence of Haloterrigena turkmenica type strain (4k). Stand Genomic Sci 2:107–116PubMedGoogle Scholar
  173. Schmid AK, Reiss DJ, Kaur A et al (2007) The anatomy of microbial cell state transitions in response to oxygen. Genome Res 17:1399–1413PubMedGoogle Scholar
  174. Schubert BA, Lowenstein TK, Timofeeff MN (2009) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482PubMedGoogle Scholar
  175. Shahmohammadi HR, Asgarani E, Terato H, Ide H, Yamamoto O (1997) Effects of 60Co gamma-rays, ultraviolet light, and mitomycin C on Halobacterium salinarium and Thiobacillus intermedius. J Radiat Res 38(1):37–43Google Scholar
  176. Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res 39:251–262PubMedGoogle Scholar
  177. Sharma N, Hepburn D, Fitt PS (1984) Photoreactivation in pigmented and non-pigmented extreme halophiles. Biochimt Biophys Acta 799:135–142Google Scholar
  178. Shim EY, Chung W-H, Nicolette ML, Zhang Y, Davis M, Zhu Z, Paull TT, Ira G, Lee SE (2010) Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J 29:3370–3380PubMedGoogle Scholar
  179. Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Birincioglu M, Helm RF, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31:2995–3005PubMedGoogle Scholar
  180. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147PubMedGoogle Scholar
  181. Shukla H (2006) Proteomic analysis of acidic chaperones, and stress proteins in extreme halophile Halobacterium NRC-1: a comparative proteomic approach to study heat shock response. Proteome Sci 4:6PubMedGoogle Scholar
  182. Skowyra A, Macneill SA (2011) Identification of essential and non-essential single-strand DNA-binding proteins in a model archaeal organism. Nucleic Acids Res 40(3):1077–1090 (Published online 2011 October 5. doi:10.1093/nar/gkr838)Google Scholar
  183. Slade D, Lindner AB, Paul G, Radman M (2009) Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136:1044–1055PubMedGoogle Scholar
  184. Slupphaug G, Kavli B, Krokan H (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251PubMedGoogle Scholar
  185. Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5:1021–1029PubMedGoogle Scholar
  186. Spudich JL, Bogomolni RA (1984) Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312:509–513PubMedGoogle Scholar
  187. Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse HJ, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814PubMedGoogle Scholar
  188. Steiner M, Oesterhelt D, Ariki M, Lanyi J (1984) Halide binding by the purified halorhodopsin chromoprotein. I. Effects on the chromophore. J Biol Chem 259:2179Google Scholar
  189. Stracker TH, Petrini JH (2011) The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 12:90–103PubMedGoogle Scholar
  190. Svendsen JM, Harper JW (2010) GEN1/Yen1 and the SLX4 complex: solutions to the problem of Holliday junction resolution. Genes Dev 24:521–536PubMedGoogle Scholar
  191. Swanson R, Morey N, Doetsch P, Jinks-Robertson S (1999) Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol Cell Biol 19:2929PubMedGoogle Scholar
  192. Symington L (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630PubMedGoogle Scholar
  193. Takara TJ, Bell SP (2009) Putting two heads together to unwind DNA. Cell 139:652–654PubMedGoogle Scholar
  194. Tang T, Asato Y (1978) Ultraviolet light-induction and photoreactivation of thymine dimers in a cyanobacterium, andlt;iandgt;Anacystis nidulansandlt;/iandgt. Arch Microbiol 118:193–197PubMedGoogle Scholar
  195. Tindall BJ, Schneider S, Lapidus A et al (2009) Complete genome sequence of Halomicrobium mukohataei type strain (arg-2). Stand Genomic Sci 1:270–277PubMedGoogle Scholar
  196. Tosca NJ, Knoll AH, Mclennan SM (2008) Water activity and the challenge for life on early Mars. Science 320:1204–1207PubMedGoogle Scholar
  197. Truglio JJ, Croteau DL, Van Houten B, Kisker C (2006) Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 106:233–252PubMedGoogle Scholar
  198. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208PubMedGoogle Scholar
  199. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900PubMedGoogle Scholar
  200. Warbrick E (2000) The puzzle of PCNA’s many partners. Bioessays 22:997–1006PubMedGoogle Scholar
  201. West S (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4:435–445PubMedGoogle Scholar
  202. Whitehead K, Kish A, Pan M et al (2006) An integrated systems approach for understanding cellular responses to gamma radiation. Mol Syst Biol 2:47PubMedGoogle Scholar
  203. Williams GJ, Johnson K, Rudolf J et al (2006) Structure of the heterotrimeric PCNA from Sulfolobus solfataricus. Acta crystallographica. Section F, Structural Biology and Crystallization Communications 62:944–948PubMedGoogle Scholar
  204. Williams RS, Williams JS, Tainer JA (2007) Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 85:509–520PubMedGoogle Scholar
  205. Williams RS, Dodson GE, Limbo O et al (2009) Nbs1 Flexibly Tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99PubMedGoogle Scholar
  206. Williams GJ, Lees-Miller SP, Tainer JA (2010) Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 9(12):1299–1306 (Epub 28 Oct 2010)Google Scholar
  207. Winter JA, Christofi P, Morroll S, Bunting KA (2009) The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation. BMC Structural Biology 9:55PubMedGoogle Scholar
  208. Wold MS (1997) Replication protein A: a heterotrimeric, single-strand DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92PubMedGoogle Scholar
  209. Woodman IL, Bolt EL (2009) Molecular biology of Hel308 helicase in archaea. Biochem Soc Trans 37:74–78PubMedGoogle Scholar
  210. Woods W, Dyall-Smith M (1997) Construction and analysis of a recombination-deficient (radA) mutant of Haloferax volcanii. Mol Microbiol 23:791–797PubMedGoogle Scholar
  211. Wu JH, Lewin RA, Werbin H (1967) Photoreactivation of UV-irradiated blue-green algal virus LPP-1. Virology 31:657–664PubMedGoogle Scholar
  212. Wyman C, Ristic D, Kanaar R (2004) Homologous recombination-mediated double-strand break repair. DNA Repair (Amst) 3:827–833PubMedGoogle Scholar
  213. Xie A, Kwok A, Scully R (2009) Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat Struct Mol Biol 16:814–818PubMedGoogle Scholar
  214. Yancey P (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819PubMedGoogle Scholar
  215. Yoshimochi T, Fujikane R, Kawanami M, Matsunaga F, Ishino Y (2008) The GINS Complex from Pyrococcus furiosus Stimulates the MCM Helicase Activity. J Biol Chem 283:1601–1609PubMedGoogle Scholar
  216. You Z, Bailis JM (2010) DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 20:402–409PubMedGoogle Scholar
  217. You Z, Shi LZ, Zhu Q et al (2009) CtIP links DNA double-strand break sensing to resection. Mol Cell 36:954–969PubMedGoogle Scholar
  218. Zahradka K, Slade D, Bailone A et al (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573PubMedGoogle Scholar
  219. Zhang R, Zhang CT (2003) Multiple replication origins of the archaeon Halobacterium species NRC-1. Biochem Biophys Res Commun 302:728–734PubMedGoogle Scholar
  220. Zhang R, Zhang C (2004) Identification of replication origins in the genome of the methanogenic archaeon, Methanocaldococcus jannaschii. Extremophiles 8:253–258PubMedGoogle Scholar
  221. Zhao A, Gray FC, MacNeill SA (2006) ATP– and NAD+-dependent DNA ligases share an essential function in the halophilic archaeon Haloferax volcanii. Molecular Microbiology 59:743–752PubMedGoogle Scholar
  222. Zhu Y, Graham JE, Ludwig M, Xiong W, Alvey RM, Shen G, Bryant DA (2010) Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechococcus sp. strain PCC 7002. Arch Biochem Biophys 504:86–99PubMedGoogle Scholar
  223. Zolensky ME (1999) Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998). Science 285:1377–1379PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institut de Génétique et MicrobiologieUniversité Paris-Sud 11Orsay CedexFrance
  2. 2.Department of BiologyThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations