Abstract

It is now well-established that viruses are the most abundant biological entities on Earth and are estimated to harbor the second greatest biomass after prokaryotes, equivalent to the amount of carbon found in ~75 million blue whales (the largest organism on Earth) Suttle (Nature 437(7057):356–361, 2005). College textbooks commonly quote a global estimate of 1030–1031 individual phages Acheson (Fundamentals of molecular virology. Wiley, p 5 2007); Flint et al. (Principles of virology v.1 molecular biology. ASM Washington, DC, p 4, 2009), and investigations have reported a range between 106 and 109 viruses per milliliter in samples taken from various aquatic habitats Fuhrman (Nature 399(6736):541–548, 1999); Wommack and Colwell (Microbiol Mol Biol Rev 64(1):69–114, 2000); Jiang et al. (Microb Ecol 47(1):9–17, 2004); Suttle (Nature 437(7057):356–361, 2005); Baxter et al. (Haloviruses of Great Salt Lake: a model for understanding viral diversity. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments: current research and future trends. Springer, New York. p 173–190, 2011); Sime-Ngando et al. (Environ Microbiol 13(8):1956–1972, 2011). While the scientific literature indicates that over 5,500 phages have been described Ackermann (Arch Virol 152(2):227–243, 2007), much of the scientific community has focused attention on the relatively fewer pathogenic viruses of humans, animals, and agricultural crops. Nonetheless, phages (previously bacteriophages) have played an essential role in basic biological research, even becoming the basis for establishing the field of molecular genetics Summers (Basic phage research and major scientific discoveries associated with bacteriophages. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC, New York, p 12–23, 2005).

Keywords

Virus Virus Mono Lake Centrifugal Filter Unit Density Gradient Ultracentrifugation Tangential Flow Filtration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acheson NH (2007) Fundamentals of molecular virology. Wiley, p 5Google Scholar
  2. Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152(2):227–243PubMedCrossRefGoogle Scholar
  3. Andersson SG, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6(7):263–268PubMedCrossRefGoogle Scholar
  4. Angly FE, Willner D, Prieto-Davo A, Edwards RA, Schmieder R, Vega-Thurber R, Antonopoulos DA, Barott K, Cottrell MT, Desnues C, Dinsdale EA, Furlan M, Haynes M, Henn MR, Hu Y, Kirchman DL, McDole T, McPherson JD, Meyer F, Miller RM, Mundt E, Naviaux RK, Rodriguez-Mueller B, Stevens R, Wegley L, Zhang L, Zhu B, Rohwer F (2009) The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLoS Comput Biol 5(12):e1000593PubMedCrossRefGoogle Scholar
  5. Atanasova NS, Roine E, Oren A, Bamford DH, Oksanen HM (2012) Global network of specific virus-host interactions in hypersaline environments. Environ Microbiol 14(2):426–440PubMedCrossRefGoogle Scholar
  6. Bamford DH, Ravantti JJ, Ronnholm G, Laurinavicius S, Kukkaro P, Dyall-Smith M, Somerharju P, Kalkkinen N, Bamford JK (2005) Constituents of SH1, a novel lipid-containing virus infecting the halophilic euryarchaeon Haloarcula hispanica. J Virol 79(14):9097–9107PubMedCrossRefGoogle Scholar
  7. Baranyi U, Klein R, Lubitz W, Kruger DH, Witte A (2000) The archaeal halophilic virus-encoded Dam-like methyltransferase M. phiCh1-I methylates adenine residues and complements dam mutants in the low salt environment of Escherichia coli. Mol Microbiol 35(5):1168–1179PubMedCrossRefGoogle Scholar
  8. Bath C, Dyall-Smith ML (1998) His1, an archaeal virus of the Fuselloviridae family that infects Haloarcula hispanica. J Virol 72(11):9392–9395PubMedGoogle Scholar
  9. Bath C, Cukalac T, Porter K, Dyall-Smith ML (2006) His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology 350(1):228–239PubMedCrossRefGoogle Scholar
  10. Baxter BK, Mangalea MRM, Willcox S, Sabet S, Nagoulat MN, Griffith JD (2011) Haloviruses of Great Salt Lake: a model for understanding viral diversity. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments: current research and future trends. Springer, New York, pp 173–190CrossRefGoogle Scholar
  11. Bettarel Y, Desnues A, and Rochelle-Newall E (2010) Lytic failure in cross-inoculation assays between phages and prokaryotes from three aquatic sites of contrasting salinity. FEMS Microbiol Lett 311(2):113–118Google Scholar
  12. Bettarel Y, Bouvier T, Bouvier C, Carre C, Desnues A, Domaizon I, Jacquet S, Robin A, Sime-Ngando T (2011) Ecological traits of planktonic viruses and prokaryotes along a full-salinity gradient. FEMS Microbiol Ecol 76(2):360–372PubMedCrossRefGoogle Scholar
  13. Brum JR, Steward GF (2010) Morphological characterization of viruses in the stratified water column of alkaline, hypersaline Mono Lake. Microb Ecol 60(3):636–643PubMedCrossRefGoogle Scholar
  14. Calvo C, de la Paz AG, Bejar V, Quesada E, Ramos-Cormenzana A (1988) Isolation and characterization of phage F9-11 from a lysogenic deleya halophila strain. Curr Microbiol 17:49–53CrossRefGoogle Scholar
  15. Clokie MRJ, Kropinski AM (eds) (2009) Bacteriophages: methods and protocols v.501 and 502. Springer Protocols Methods in Molecular Biology, HumanaGoogle Scholar
  16. Cotterill S, Kearsey S (2009) Eukaryotic DNA polymerases. in eLS (http://www.els.net). Wiley, Chichester, pp 1–6
  17. Daniels LL, Wais AC (1984) Restriction and modification of halophage S45 in halobacterium. Curr Microbiol 10(3):133–136 CrossRefGoogle Scholar
  18. Daniels LL, Wais AC (1990) Ecophysiology of bacteriophage S5100 infecting halobacterium cutirubrum. Appl Environ Microbiol 56(11):3605–3608PubMedGoogle Scholar
  19. Daniels LL, Wais AC (1998) Virulence in phage populations infecting Halobacterium cutirubrum. FEMS Microbiol Ecol 25(2):129–134Google Scholar
  20. Diez B, Anton J, Guixa-Boixereu N, Pedros-Alio C, Rodriguez-Valera F (2000) Pulsed-field gel electrophoresis analysis of virus assemblages present in a hypersaline environment. Int Microbiol 3(3):159–164PubMedGoogle Scholar
  21. Dyall-Smith M (2009) The halohandbook: protocols for haloarchaeal genetics v.7.1. http://www.haloarchaea.com/resources/halohandbook/, p 79
  22. Filee J, Chandler M (2010) Gene exchange and the origin of giant viruses. Intervirology 53(5):354–361PubMedCrossRefGoogle Scholar
  23. Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2009) Principles of virology v.1 molecular biology. ASM Washington, DC, p 4Google Scholar
  24. Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Research 117(1):5–16PubMedCrossRefGoogle Scholar
  25. Forterre P, Prangishvili D (2009) The origin of viruses. Res Microbiol 160(7):466–472PubMedCrossRefGoogle Scholar
  26. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399(6736):541–548PubMedCrossRefGoogle Scholar
  27. Goel U, Kauri T, Ackerman H-W, Kushner DJ (1996) A moderately halophilic Vibrio from a Spanish saltern and its lytic bacteriophage. Can J Microbiol 42:1015–1023CrossRefGoogle Scholar
  28. Gonzalez JM, Suttle CA (1993) Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10CrossRefGoogle Scholar
  29. Gropp F, Palm P, Zillig W (1989) Expression and regulation of Halobacterium halobium phage ϕH genes. Can J Microbiol 35(1):182–188PubMedCrossRefGoogle Scholar
  30. Gropp F, Grampp B, Stolt P, Palm P, Zillig W (1992) The immunity-conferring plasmid p ϕHL from the Halobacterium salinarium phage ϕH: nucleotide sequence and transcription. Virology 190(1):45–54PubMedCrossRefGoogle Scholar
  31. Guixa-Boixareu N, Calderon-Paz JI, Heldal M, Bratbak G, Pedros-Alio C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aqua Microb Ecol 11(3):215–227CrossRefGoogle Scholar
  32. Iro M, Klein R, Galos B, Baranyi U, Rossler N, Witte A (2007) The lysogenic region of virus ϕCh1: identification of a repressor-operator system and determination of its activity in halophilic Archaea. Extremophiles 11(2):383–396PubMedCrossRefGoogle Scholar
  33. Jaalinoja HT, Roine E, Laurinmaki P, Kivela HM, Bamford DH, Butcher SJ (2008) Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci U S A 105(23):8008–8013PubMedCrossRefGoogle Scholar
  34. Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64(8):2780–2787PubMedGoogle Scholar
  35. Jiang S, Steward G, Jellison R, Chu W, Choi S (2004) Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Microb Ecol 47(1):9–17PubMedCrossRefGoogle Scholar
  36. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2(3):191–200PubMedCrossRefGoogle Scholar
  37. Kauri T, Ackerman H-W, Goel U, Kushner DJ (1991) A bacteriophage of a moderately halophilic bacterium. Arch Microbiol 156:435–438Google Scholar
  38. Kirchman DL (ed) (2000) Microbial ecology of the oceans. Wiley series in ecological and applied microbiology. Wiley, New YorkGoogle Scholar
  39. Kivela HM, Roine E, Kukkaro P, Laurinavicius S, Somerharju P, Bamford DH (2006) Quantitative dissociation of archaeal virus SH1 reveals distinct capsid proteins and a lipid core. Virology 356(1–2):4–11PubMedCrossRefGoogle Scholar
  40. Klein R, Greineder B, Baranyi U, Witte A (2000) The structural protein E of the archaeal virus ϕCh1: evidence for processing in Natrialba magadii during virus maturation. Virology 276(2):376–387PubMedCrossRefGoogle Scholar
  41. Klein R, Baranyi U, Rossler N, Greineder B, Scholz H, Witte A (2002) Natrialba magadii virus ϕCh1: first complete nucleotide sequence and functional organization of a virus infecting a haloalkaliphilic archaeon. Mol Microbiol 45(3):851–863PubMedCrossRefGoogle Scholar
  42. Klein R, Rossler N, Iro M, Scholz H, Witte A (2012) Haloarchaeal myovirus ϕCh1 harbors a phase variation system for the production of protein variants with distinct cell surface adhesion specificities. Mol Microbiol 83(1):137–150PubMedCrossRefGoogle Scholar
  43. Koonin E, Senkevich T, Dolja V (2006) The ancient virus world and evolution of cells. Biology Direct 1:29PubMedCrossRefGoogle Scholar
  44. Krupovic M, Forterre P, Bamford DH (2010) Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol 397(1):144–160PubMedCrossRefGoogle Scholar
  45. Kukkaro P, Bamford DH (2009) Virus-host interactions in environments with a wide range of ionic strengths. Environ Microbiol Rep 1(1):71–77CrossRefGoogle Scholar
  46. Lipton HL (1980) Persistent Theiler’s murine encephalomyelitis virus infection in mice depends on plaque size. J Gen Virol 46(1):169–177PubMedCrossRefGoogle Scholar
  47. Maloy SR, John E, Cronan J, Freifelder D (1994) Microbial genetics. Jones and Bartlett, Massachusetts, p 95Google Scholar
  48. Mann NH, Cook A, Millard A, Bailey S, Clokie M (2003) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424(6950):741PubMedCrossRefGoogle Scholar
  49. Mei Y, Chen J, Sun D, Chen D, Yang Y, Shen P, Chen X (2007) Induction and preliminary characterization of a novel halophage SNJ1 from lysogenic Natrinema sp. F5. Can J Microbiol 53(9):1106–1110PubMedCrossRefGoogle Scholar
  50. Middelboe M (2000) Bacterial growth rate and marine virus-host dynamics. Microb Ecol 40(2):114–124PubMedGoogle Scholar
  51. Middelboe M, Hagstrom A, Blackburn N, Sinn B, Fischer U, Borch NH, Pinhassi J, Simu K, Lorenz MG (2001) Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Microb Ecol 42(3):395–406PubMedCrossRefGoogle Scholar
  52. Nuttall SD, Dyall-Smith ML (1993) HF1 and HF2: novel bacteriophages of halophilic archaea. Virology 197(2):678–684PubMedCrossRefGoogle Scholar
  53. Nuttall SD, Dyall-Smith ML (1995) Halophage HF2: genome organization and replication strategy. J Virol 69(4):2322–2327PubMedGoogle Scholar
  54. Oren A, Bratbak G, Heldal M (1997) Occurrence of virus-like particles in the Dead Sea. Extremophiles 1(3):143–149PubMedCrossRefGoogle Scholar
  55. Pauling C (1982) Bacteriophages of Halobacterium halobium: isolated from fermented fish sauce and primary characterization. Can J Microbiol 28(8):916–921PubMedCrossRefGoogle Scholar
  56. Pagaling E, Haigh RD, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2007) Sequence analysis of an Archaeal virus isolated from a hypersaline lake in Inner Mongolia, China. BMC Genomics 8:410PubMedCrossRefGoogle Scholar
  57. Pietila MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009) An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol Microbiol 72(2):307–319PubMedCrossRefGoogle Scholar
  58. Porter K, Kukkaro P, Bamford JK, Bath C, Kivela HM, Dyall-Smith ML, Bamford DH (2005) SH1: A novel, spherical halovirus isolated from an Australian hypersaline lake. Virology 335(1):22–33PubMedCrossRefGoogle Scholar
  59. Porter K, Dyall-Smith M (2006) The isolation and study of viruses of halophilic microorganisms. In: Rainey FA, Oren A (eds) Extremophiles. Elsevier, pp 681–702Google Scholar
  60. Porter K, Russ BE, Dyall-Smith ML (2007) Virus-host interactions in salt lakes. Curr Opin Microbiol 10(4):418–424PubMedCrossRefGoogle Scholar
  61. Porter K, Dyall-Smith M L (2008) Transfection of haloarchaea by the DNAs of spindle and round haloviruses and the use of transposon mutagenesis to identify non-essential regions. Mol Microbiol 70(5):1236–1245PubMedCrossRefGoogle Scholar
  62. Porter K, Russ BE, Yang J, Dyall-Smith ML (2008) The transcription programme of the protein-primed halovirus SH1. Microbiology 154(Pt 11):3599–3608PubMedCrossRefGoogle Scholar
  63. Prangishvili D, Garrett RA (2005) Viruses of hyperthermophilic Crenarchaea. Trends Microbiol 13(11):535–542PubMedCrossRefGoogle Scholar
  64. Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the Archaea: a unifying view. Nat Rev Microbiol 4(11):837–848PubMedCrossRefGoogle Scholar
  65. Ramsingh AI, Caggana M, Ronstrom S (1995) Genetic mapping of the determinants of plaque morphology of coxsackievirus B4. Arch Virol 140(12):2215–2226PubMedCrossRefGoogle Scholar
  66. Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pasic L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4(6):739–751PubMedCrossRefGoogle Scholar
  67. Roine E, Kukkaro P, Paulin L, Laurinavicius S, Domanska A, Somerharju P, Bamford DH (2010) New, closely related haloarchaeal viral elements with different nucleic Acid types. J Virol 84(7):3682–3689PubMedCrossRefGoogle Scholar
  68. Rossler N, Klein R, Scholz H, Witte A (2004) Inversion within the haloalkaliphilic virus ϕCh1 DNA results in differential expression of structural proteins. Mol Microbiol 52(2):413–426PubMedCrossRefGoogle Scholar
  69. Santos F, Meyerdierks A, Pena A, Rossello-Mora R, Amann R, Anton J (2007) Metagenomic approach to the study of halophages: the environmental halophage 1. Environ Microbiol 9(7):1711–1723PubMedCrossRefGoogle Scholar
  70. Santos F, Yarza P, Parro V, Briones C, Anton J (2010) The metavirome of a hypersaline environment. Environ Microbiol 12(11):2965–2976PubMedCrossRefGoogle Scholar
  71. Santos F, Moreno-Paz M, Meseguer I, Lopez C, Rossello-Mora R, Parro V, Anton J (2011) Metatranscriptomic analysis of extremely halophilic viral communities. ISME J 5(10):1621–1633PubMedCrossRefGoogle Scholar
  72. Schloer GM, Hanson RP (1968) Relationship of plaque size and virulence for chickens of 14 representative Newcastle disease virus strains. J Virol 2(1):40–47PubMedGoogle Scholar
  73. Schnabel H, Zillig W, Pfaffle M, Schnabel R, Michel H, Delius H (1982a) Halobacterium halobium phage ϕH. The EMBO J 1(1):87–92Google Scholar
  74. Schnabel H, Schramm E, Schnabel R, Zillig W (1982b) Structural variability in the genome of phage ϕH of Halobacterium halobium. Mol Gen Genet 188(3):370–377CrossRefGoogle Scholar
  75. Schnabel H, Zillig W (1984) Circular structure of the genome of phage ϕH in a lysogenic Halobacterium halobium. Mol Gen Genet 193(3):422–426CrossRefGoogle Scholar
  76. Sime-Ngando T, Lucas S, Robin A, Tucker KP, Colombet J, Bettarel Y, Desmond E, Gribaldo S, Forterre P, Breitbart M, Prangishvili D (2011) Diversity of virus-host systems in hypersaline Lake Retba, Senegal. Environ Microbiol 13(8):1956–1972PubMedCrossRefGoogle Scholar
  77. Stedman KM, Porter K, Dyall-Smith M (2010) The isolation of viruses infecting Archaea. In: Wilhelm SW, Weinbauer MG, Suttle CA (eds) Manual of aquatic viral ecology. American Society for Limnology and Oceanography (ASLO), pp 57–64Google Scholar
  78. Stolt P, Zillig W (1993) In vivo and in vitro analysis of transcription of the L region from the Halobacterium salinarium phage ϕH: definition of a repressor-enhancing gene. Virology 195(2):649–658PubMedCrossRefGoogle Scholar
  79. Stolt P, Zillig W (1994) Transcription of the halophage ϕH repressor gene is abolished by transcription from an inversely oriented lytic promoter. FEBS Lett 344(2–3):125–128PubMedCrossRefGoogle Scholar
  80. Stolt P, Grampp B, Zillig W (1994) Genes for DNA cytosine methyltransferases and structural proteins, expressed during lytic growth by the phage ϕH of the archaebacterium Halobacterium salinarium. Biol Chem Hoppe Seyler 375(11):747–757PubMedCrossRefGoogle Scholar
  81. Summers WC (2005) Basic phage research and major scientific discoveries associated with bacteriophages. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC, New York, pp 12–23Google Scholar
  82. Suttle CA (2005) Viruses in the sea. Nature 437(7057):356–361PubMedCrossRefGoogle Scholar
  83. Tang SL, Nuttall S, Ngui K, Fisher C, Lopez P, Dyall-Smith M (2002) HF2: a double-stranded DNA tailed haloarchaeal virus with a mosaic genome. Mol Microbiol 44(1):283–296PubMedCrossRefGoogle Scholar
  84. Tang SL, Nuttall S, Dyall-Smith M (2004) Haloviruses HF1 and HF2: evidence for a recent and large recombination event. J Bacteriol 186(9):2810–2817PubMedCrossRefGoogle Scholar
  85. Thingstad T, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aqua Microb Ecol 13(1):19–27CrossRefGoogle Scholar
  86. Torsvik T, Dundas ID (1974) Bacteriophage of Halobacterium salinarium. Nature 248(450):680–681PubMedCrossRefGoogle Scholar
  87. Torsvik T, Dundas I (1980) Persisting phage infection in Halobacterium salinarium str. 1. J Gen Virol 47(1):29–36CrossRefGoogle Scholar
  88. Tyson GW, Banfield JF (2008) Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10(1):200–207PubMedGoogle Scholar
  89. Uchida K, Kanbe C (1993) Occurrence of bacteriophages lytic for pedicoccus halophilus, a halophilic lactic-acid bacterium, in soy sauce fermentation. J Gen Appl Microbiol 39:429–437CrossRefGoogle Scholar
  90. van Hannen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65(2):795–801PubMedGoogle Scholar
  91. Vogelsang-Wenke H, Oesterhelt D (1988) Isolation of a halobacterial phage with a fully cytosine-methylated genome. Mol Gen Genet 211(3):407–414CrossRefGoogle Scholar
  92. Wais AC, Daniels LL (1985) Populations of bacteriophage infecting Halobacterium in a transient brine pool. FEMS Microbiol Ecol 31:323–326CrossRefGoogle Scholar
  93. Wais AC, Kon M, MacDonald RE, Stollar BD (1975) Salt-dependent bacteriophage infecting Halobacterium cutirubrum and H. halobium. Nature 256(5515):314–315PubMedCrossRefGoogle Scholar
  94. Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6(1):1–11PubMedCrossRefGoogle Scholar
  95. Wen K, Ortmann AC, Suttle CA (2004) Accurate estimation of viral abundance by epifluorescence microscopy. Appl Environ Microbiol 70(7):3862–3867PubMedCrossRefGoogle Scholar
  96. Wilhelm SW, Weinbauer MG, Suttle CA (eds) (2010) Manual of aquatic viral ecology. American Society of Limnology and Oceanography, Waco.Google Scholar
  97. Witte A, Baranyi U, Klein R, Sulzner M, Luo C, Wanner G, Kruger DH, Lubitz W (1997) Characterization of Natronobacterium magadii phage ϕCh1, a unique archaeal phage containing DNA and RNA. Mol Microbiol 23(3):603–616PubMedCrossRefGoogle Scholar
  98. Wixon J (2001) Featured organism: reductive evolution in bacteria: Buchnera sp., Rickettsia prowazekii and Mycobacterium leprae. Comp Funct Genomics 2(1):44–48PubMedCrossRefGoogle Scholar
  99. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64(1):69–114PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of BiologyLa Sierra UniversityRiversideUSA

Personalised recommendations