Fluid Dynamics

  • Rainer Kimmich
Chapter

Abstract

Treatments of molecular dynamics in general and especially if they are based on Langevin equations of motions are hardly possible without referring to hydrodynamics. Basic hydrodynamic concepts such as Stokes’ friction law of particles in a viscous medium are ubiquitously employed in molecular dynamics. The present treatise is unique in the sense that it juxtaposes the principles of the analytical formalism in the form of computer simulations with real experiments. If the topology of objects is known or predetermined by suitable sample preparations, hydrodynamics can be simulated and measured under identical conditions. This option opens a promising application field of utmost importance for chemical engineering. The term fluid dynamics is moreover understood in a generalized sense. Apart from pressure-driven flow, a wealth of related transport phenomena will be addressed in this chapter. The scope covers examples as different as the spatially resolved probing of thermal convection, heat conduction, electroosmosis, and ionic currents.

Keywords

Porous Medium Computational Fluid Dynamic Pore Space Rayleigh Number Thermal Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tritton DJ (1988) Physical fluid dynamics. Clarendon, OxfordGoogle Scholar
  2. 2.
    Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Anderson JD (2002) Modern compressible flow. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    Arfken GB, Weber HJ (1995) Mathematical methods for physicists. Academic, San DiegoGoogle Scholar
  5. 5.
    Anderson JD jr (1995) Computational fluid dynamics. McGraw-Hill, New YorkGoogle Scholar
  6. 6.
    Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New YorkGoogle Scholar
  7. 7.
    http://www.ctcms.nist.gov/fipy/#Google Scholar
  8. 8.
  9. 9.
    Klemm A, Müller H-P, Kimmich R (1997) Phys Rev 55:4413Google Scholar
  10. 10.
    Codd SL, Seymour JD (eds) (2009) Magnetic resonance microscopy. Wiley-VCH, WeinheimGoogle Scholar
  11. 11.
    Stapf S, Han S-I (eds) (2006) NMR imaging in chemical engineering. Wiley-VCH, WeinheimGoogle Scholar
  12. 12.
    Fukushima E (1999) Ann Rev Fluid Mech 31:95CrossRefGoogle Scholar
  13. 13.
    Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, LondonGoogle Scholar
  14. 14.
    Bunde A, Havlin S (eds) (1996) Fractals and disordered systems. Springer, BerlinGoogle Scholar
  15. 15.
    Buhai B, Kühnle A, Kimmich R (2005) New J Phys 7:157CrossRefGoogle Scholar
  16. 16.
    Klemm A, Kimmich R, Weber M (2001) Phys Rev E63:041514Google Scholar
  17. 17.
    Kossel E, Weber M, Kimmich R (2004) Solid State NMR 25:28CrossRefGoogle Scholar
  18. 18.
    Madou M (1997) Fundamentals of microfabrication. CRC Press, Boca RatonGoogle Scholar
  19. 19.
    Kimmich R (2002) Chem Phys 284:253CrossRefGoogle Scholar
  20. 20.
    Buhai B, Hakimov A, Ardelean I, Kimmich R (2004) J Magn Reson 168:175CrossRefGoogle Scholar
  21. 21.
    Feng S, Halperin BI, Sen PN (1987) Phys Rev B 35:197CrossRefGoogle Scholar
  22. 22.
    Buhai B, Li Y, Kimmich R (2009) In: Codd SL, Seymour JD (eds) Magnetic resonance microscopy. Wiley-VCH, Weinheim, p 197Google Scholar
  23. 23.
    Codd SL, Manz B, Seymour JD, Callaghan PT (1999) Phys Rev E 60:R3491CrossRefGoogle Scholar
  24. 24.
    Sahimi M (1995) Flow and transport in porous media and fractured rock. VCH, WeinheimGoogle Scholar
  25. 25.
    Probstein RF (1994) Physicochemical hydrodynamics. Wiley, New YorkCrossRefGoogle Scholar
  26. 26.
    Taylor GI (1953) Proc R Soc Lond A219:186Google Scholar
  27. 27.
    Aris R (1956) Proc R Soc Lond A235:67Google Scholar
  28. 28.
    Kossel E, Buhai B, Kimmich R (2006) In: Stapf S, Han S-I (eds) NMR imaging in chemical engineering. Wiley-VCH, Weinheim, p 205CrossRefGoogle Scholar
  29. 29.
    Li Y, Farrher G, Kimmich R (2006) Phys Rev E74:066309Google Scholar
  30. 30.
    Kimmich R, Fatkullin N, Kehr M, Li Y (2008) In: Klages R, Radons G, Sokolov IM (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, p 485Google Scholar
  31. 31.
    Metzler R, Klafter J (2000) Phys Rep 339:1CrossRefGoogle Scholar
  32. 32.
    Orbach R (1986) Science 231:814CrossRefGoogle Scholar
  33. 33.
    Makse HA, Andrade JS Jr, Stanley HE (2000) Phys Rev E 61:583CrossRefGoogle Scholar
  34. 34.
    Weber M, Klemm A, Kimmich R (2001) Phys Rev Lett 19:4302CrossRefGoogle Scholar
  35. 35.
    Weber M, Kimmich R (2002) Phys Rev E 66:056301CrossRefGoogle Scholar
  36. 36.
    Haken H (1978) Synergetics. Springer, BerlinCrossRefGoogle Scholar
  37. 37.
    Weis J, Kimmich R, Müller H-P (1996) Magn Reson Imaging 14:319CrossRefGoogle Scholar
  38. 38.
    Nield DA, Bejan A (1992) Convection in porous media. Springer, BerlinGoogle Scholar
  39. 39.
    Webb AG (2001) Ann Rep NMR Spectrosc 45:1CrossRefGoogle Scholar
  40. 40.
    Li D (2004) Electrokinetics in microfluidics. Elsevier, AmsterdamGoogle Scholar
  41. 41.
    Buhai B, Binser T, Kimmich R (2007) Appl Magn Reson 32:25CrossRefGoogle Scholar
  42. 42.
    Buhai B, Kimmich R (2006) Phys Rev Lett 96:174501CrossRefGoogle Scholar
  43. 43.
    Weber M, Kimmich R (2002) Phys Rev E 66:026306CrossRefGoogle Scholar
  44. 44.
    Cummings EB, Griffiths SK, Nilson RH, Paul PH (2000) Anal Chem 72:2526CrossRefGoogle Scholar
  45. 45.
    Santiago JG (2007) J Coll Interface Sci 310:675CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Rainer Kimmich
    • 1
  1. 1.Sektion KernresonanzspektroskopieUniversität UlmUlmGermany

Personalised recommendations