Introduction

  • Rainer Kimmich
Chapter

Abstract

It will be pointed out that there is a category of dynamic functions that is used and consequently understood commonly by all methodological communities, namely, temporal correlation functions. A correlation function terminology will be introduced as a sort of lingua franca of molecular dynamics. In a multidisciplinary, multi-methodological field such as soft-matter science, this is expected to facilitate communication among scientists employing different methods in studies of molecular dynamics. In the subsequent chapters, the reader will frequently be reminded of these “common denominators” of dynamic techniques. As further key concepts of pivotal importance, linear-response theory and the fluctuation-dissipation theorem will be outlined.

Keywords

Molecular Dynamic Correlation Function Relaxation Experiment Dynamic Structure Factor Incoherent Neutron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bodenhausen G (2004) Chemphyschem 5:768CrossRefGoogle Scholar
  2. 2.
    Abragam A (1961) The principles of nuclear magnetism. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Kimmich R, Anoardo E (2004) Prog NMR Spectrosc 44:257CrossRefGoogle Scholar
  4. 4.
    Blümich B (2000) NMR imaging of materials. Clarendon, OxfordGoogle Scholar
  5. 5.
    Kimmich R (1997) NMR tomography, diffusometry, relaxometry. Springer, BerlinGoogle Scholar
  6. 6.
    Saalwächter K, Heuer A (2006) Macromolecules 39:3291CrossRefGoogle Scholar
  7. 7.
    Ok S, Steinhart M, Serbescu A, Franz C, Chavez FV, Saalwächter K (2010) Macromolecules 43:4429CrossRefGoogle Scholar
  8. 8.
    Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  9. 9.
    Glarum SH (1960) J Chem Phys 33:1371CrossRefGoogle Scholar
  10. 10.
    Kärger J, Pfeifer H, Heink W (1988) Adv Magn Reson 12:1Google Scholar
  11. 11.
    Price WS (1996) Annu Rep NMR Spectrosc 32:51CrossRefGoogle Scholar
  12. 12.
    Ardelean I, Kimmich R (2003) Annu Rep NMR Spectrosc 49:43Google Scholar
  13. 13.
    Richter D, Monkenbusch M, Arbe A, Comenero J (2005) Adv Polym Sci 174:1Google Scholar
  14. 14.
    Fleischer G, Fujara F (1994) In: Diehl P, Fluck E, Günther H, Kosfeld R, Seelig J (eds) NMR – basic principles and progress, solid state NMR, vol 30. Springer, Berlin, pp 159–207Google Scholar
  15. 15.
    Kehr M, Fatkullin N, Kimmich R (2007) J Chem Phys 126:094903CrossRefGoogle Scholar
  16. 16.
    Feller W (1968) An introduction to probability theory and its applications. Wiley, New YorkGoogle Scholar
  17. 17.
    Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Schiff LI (1968) Quantum mechanics. McGraw-Hill, AucklandGoogle Scholar
  19. 19.
    Arndt M, Nairz O, Vos-Andreae J, Keller C, van der Zouw G, Zeilinger A (1999) Nature 401:680CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Rainer Kimmich
    • 1
  1. 1.Sektion KernresonanzspektroskopieUniversität UlmUlmGermany

Personalised recommendations