Advertisement

Theoretical Background

  • Azadeh Ramesh
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

With respect to the literatures and previous researches, this chapter gives a comparative overview of the major challenges faced when dealing with flood hazard. First, definition, source and implication of digital elevation model are explained, and then the focus is on application of different interpolation techniques in drainage network estimation, coupled with advantages and disadvantages of these methods and their application in different research fields. Flood hazard, concepts, definition, types, and causes are defined in the next parts.

Keywords

Digital Elevation Model Flood Event Flood Hazard Interpolation Technique Flood Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vaze J, Teng J, Spencer G (2010) Impact of DEM accuracy and resolution on topographic indices. Environ Model Softw 25:1086–1098CrossRefGoogle Scholar
  2. 2.
    Hutchinson MF, Gallant JC (2000) Digital elevation models and representation of terrain shape. In: Wilson JP, Gallant JC (eds) Terrain analysis. Wiley, New York, pp 29–50Google Scholar
  3. 3.
    Hutchinson M, Stein J, Stein J (2008) User’s guide, GEODATA 9 second “DEM and D8”, digital elevation model version 3 and flow direction grid, fenner school of environment and society. Australian National University (ANU) and Hamish Anderon and Phil Tickle, geosciences AustraliaGoogle Scholar
  4. 4.
    Teng J, Vaze J, Tuteja NK, Gallant J (2008) A GIS based tool for spatial and distributed hydrological modelling: CLASS spatial analyst. Trans GIS 12(2):209–225Google Scholar
  5. 5.
    Burrough PA, McDonnell RA (1998) Principals of geographical information systems. Oxford University Press, New York, p 333Google Scholar
  6. 6.
    Wood J (1996) The geomorphological characterization of digital elevation models. Ph.D. Dissertation, Department of Geography, University of Leicester, Leicester, UKGoogle Scholar
  7. 7.
    Olivera F, Furnans D, Maidment D, Djokic Z (2002) Drainage system, Arc hydro: GIS for water resources. In: Maidment DR (ed) ESRI Press, Redlands, p 203Google Scholar
  8. 8.
    Wechsler S (1999) Results of the DEM user survey. Available online at: http://web.syr.edu/~sperlit/survey. Verified 28 Nov 2011
  9. 9.
    Harding DJ, Bufton JL, Frawley J (1994) Satellite laser altimetry of terrestrial topography: vertical accuracy as a function of surface slope, roughness and cloud cover. IEEE Trans Geosci Remote Sens 32:329–339CrossRefGoogle Scholar
  10. 10.
    Burrough PA (1986) Principles of geographical information systems for land resources assessment, vol 12. Clarendon Press, New YorkGoogle Scholar
  11. 11.
    Hutchinson MF, Dowling TI (1991) A continental hydrological assessment of a new grid-based digital elevation model of Australia. Hydrol Process 5:45–58CrossRefGoogle Scholar
  12. 12.
    ANUDEM User’s Manual (2011) Fenner school of environment and society. ANU College of Medicine, Biology and Environment. http://fennerschool.anu.edu.au/research/publications/software-datasets/anudem. Verified 28 Nov 2011
  13. 13.
    Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogram Eng Remote Sens 54:1593–1600Google Scholar
  14. 14.
    Taylor J (1997) An introduction to error analysis: the study of uncertainties in physical measurements. University Science Books, Sausalito, p 327Google Scholar
  15. 15.
    Podobnikar T (2006) DEM from various data sources and geomorphic details enhancement, 5t ICA mountain cartography workshop. Bohinj, 31 Mar 2006Google Scholar
  16. 16.
    Fürst J (2004) Tutorial: interpolation of hydrological variables. University of Natural Resources and Life Sciences, ViennaGoogle Scholar
  17. 17.
    Smith MJ, Goodchild MF, Longley PA (2009) Geospatial analysis, a comprehensive guide to principles, techniques and software tools, 3rd edn., Issue version: 3.1 2—Published by Matador (an imprint of Troubador Publishing Ltd) on behalf of The Winchelsea PressGoogle Scholar
  18. 18.
    Akkala A, Devabhaktuni V, Kumar A (2010) Interpolation techniques and associated software for environmental data. Environ Prog Sustain Energ 29:134–141CrossRefGoogle Scholar
  19. 19.
    ArcGIS 9.3-online help (2011) Available online at: http://webhelp.esri.com. Verified 28 Nov 2011
  20. 20.
    Wilson JP, Gallant JC (2000) Differences in topographic characteristics computed from 100- and 1000-m resolution digital elevation model data. Hydrol Process 14:987–1002CrossRefGoogle Scholar
  21. 21.
    Wilson JP, Gallant JC (2000) Digital terrain analysis. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and application. Wiley, New York, pp 1–27Google Scholar
  22. 22.
    IAEA/WMO (2006) Global Network of Isotopes in Precipitation. The GNIP Database. (http://isohis.iaea.org), accessed August 2010Google Scholar
  23. 23.
    Wise SM (1998) The effect of GIS interpolation errors on the use of digital elevation models in geomorphology. In: Lowe SN, Richards KS, Chandler JH (eds) Landform monitoring, modelling and analysis. Wiley, New York, pp 139–164Google Scholar
  24. 24.
    Kundzewicz Z (2003) Extreme precipitation and floods in the changing world. IAHS-AISH Publ 281:32–39Google Scholar
  25. 25.
    Directive 2007/60/EC of the European parliament and of the council of 23 Oct 2007 on the assessment and management of flood risks text with EEA relevance. Official Journal of the European Union, L 288, pp 0027–0034Google Scholar
  26. 26.
    UN-ISDR (2004) International Strategy for Disaster Reduction, Available online at: http://www.unisdr.org (Verified 28 Nov 2011)
  27. 27.
    Aysan YF (1993) Vulnerability assessment. In: Merriman PA, Browitt CWA (eds) Natural disasters: protecting vulnerable communities. Thomas Telford, London, pp 1–14Google Scholar
  28. 28.
    Davis L (1992) Natural disasters: from the black plague to the eruption of Mt. Pinatubo, Facts on File, 321:1976Google Scholar
  29. 29.
    Wasseff AM (1993) relative impact on human life of various types of natural disaster: an interpretation of data for the period 1947–1991. In natural disasters: protecting vulnerable communities. Thomas Telford, London, pp 15–24Google Scholar
  30. 30.
    Wijkman A, Timberlake L (1984) Natural disasters: acts of god or acts of man?. International Institute for Environment and Development press, Washington, p 126Google Scholar
  31. 31.
    Yen C-L, Yen BC (1996) A study on effectiveness of flood mitigation measures. In: Maxwell WHC, Preul HC, Stout GE (eds) Proceedings, Rivertech’96, 1st international conference on new/emerging concepts for rivers, International Water Resources Association, Albuquerque, NM, pp 555–562Google Scholar
  32. 32.
    Munich Reinsurance (1997) Topics: annual review of natural catastrophes 1996, Munich Re 2005. p 16Google Scholar
  33. 33.
    Kundzewicz ZW, Jun X (2004) Towards an improved flood preparedness system in China Hydrol Sci J 49(6):941–944Google Scholar
  34. 34.
    Schultz B (2006) Floods management under rapid urbanization and industrialization in flood-prone areas: a need for serious consideration. Irrig Drainage 55:3–8CrossRefGoogle Scholar
  35. 35.
    World Meteorological Organization (WMO) (1981a) Flash flood forecasting, operational hydrology report no. 18, (WMO-No. 577), Geneva, Switzerland, p 47Google Scholar
  36. 36.
    World Meteorological Organization (WMO) (1994) Guide to hydrological practices, (WMO‐No. 168), vol 2, 5th edn. Geneva, Switzerland, p 765Google Scholar
  37. 37.
    COM (2004) 472 final, Brussels, 12 July 2004, Commission of the European communities, Communication from the commission to the council, The European parliament, The European economic and social committee and the committee of the regions, Flood risk management, Flood prevention, protection and mitigationGoogle Scholar
  38. 38.
    Intergovernmental Panel on Climate Change (IPCC) (2007a) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment, Report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, p 996Google Scholar
  39. 39.
    Intergovernmental Panel on Climate Change (IPCC) (2007b) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability, contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 7–22Google Scholar
  40. 40.
    Intergovernmental Panel on Climate Change (IPCC) (2007c) Climate change 2007: synthesis report, contribution of working group to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  41. 41.
    United States Search and Rescue Task Force (2011) Floods and flash floods, available online at: http://www.ussartf.org/flooding.htm. Verified 28 Nov 2011
  42. 42.
    Kundzewicz ZW, Jun X (2004) Towards an improved flood preparedness system in China. Hydrol Sci J 49(6):941–944Google Scholar
  43. 43.
    Andréasson J, Bergström S, Carlsson B, Graham L, Lindström G (2004) Hydrological change—climate change impact simulations for Sweden. Ambio 33:228–234Google Scholar
  44. 44.
    Lotsari E, Veijalainen N, Alho P, Käyhkö J (2010) Impact of climate change on future discharges and flow characteristics of the Tana river, Sub-Arctic Northern Fennoscandia. Geografiska Annaler: Ser A, Phys Geogr 92:263–284CrossRefGoogle Scholar
  45. 45.
    Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, Willén U, Wyser K (2005) A 140 year simulation of European climate with the new version of the Ross by centre regional atmospheric climate model (RCA3). Reports meteorology and climatology, 108, SMHI, SE-60176 Norrköping, Sweden, p 54Google Scholar
  46. 46.
    Beldring S, Engen‐Skaugen T, Førland EJ, Roald LA (2008) Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites. Tellus A 60:439–450CrossRefGoogle Scholar
  47. 47.
    Intergovernmental Panel on Climate Change (IPCC) (1995) Climate changes 1995: contribution of working group I to the second report of the intergovernmental panel on climate change. pp 141–193Google Scholar
  48. 48.
    Lettenmaier DP, Wood EF, Wallis JR (1994) Hydro-climatological trends in the continental United States (1948–1988). J Clim 7:586–607CrossRefGoogle Scholar
  49. 49.
    Plummer N, Salinger MJ, Nicholls N, Suppiah R, Hennessy KJ, Leighton RM, Trewin B, Page CM, Lough JM (1999) Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Clim Change 42:183–202CrossRefGoogle Scholar
  50. 50.
    Suppiah R, Hennessy K (1998) Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990. Int J Climatol 10:1141–1164CrossRefGoogle Scholar
  51. 51.
    Viglizzo EF, Roberto ZE, Filippin MC, Pordomingo AJ (1995) Climate variability and agroecological change in the central Pampas of Argentina. Agric Ecosyst Environ 55:7–16CrossRefGoogle Scholar
  52. 52.
    Gruza G, Rankova E, Razuvaev V, Bulygina O (1999) Indicators of climate change for the Russian federation. Clim Change 42:219–242CrossRefGoogle Scholar
  53. 53.
    Zhai P, Sun A, Ren F, Liu X, Gao B, Zhang Q (1999) Changes of climate extremes in China. Clim Change 42:203–218CrossRefGoogle Scholar
  54. 54.
    Türke SM (1996) Spatial and temporal analysis of annual rainfall variations in Turkey. Int J Climatol 16:1057–1076Google Scholar
  55. 55.
    Hess TM, Stephens W, Maryah UM (1995) Rainfall trends in the north east arid zone of Nigeria 1961–1990. Agric For Meteorol 74:87–97CrossRefGoogle Scholar
  56. 56.
    Mason SJ (1996) Climatic change over the lowveld of South Africa. Clim Change 32:35–54CrossRefGoogle Scholar
  57. 57.
    Heino R, Forland E, Tuomenvirta H, Alexandersson H, Beniston M, Pfister C, Rebetez M, Rosenhagen G, Jones PD, Horton EB, Folland CK, Hulme M, Parker DE, Basnett TA (1999) The use of indices to identify changes in climatic extremes. Clim Change 42:131–149CrossRefGoogle Scholar
  58. 58.
    Bootsma A (1994) Long-term (100 years) climate trends for agriculture at selected locations in Canada. Clim Change 26:65–88CrossRefGoogle Scholar
  59. 59.
    Smit B, Ludlow L, Brklacich M (1988) Implications of a global climatic warming for agriculture: a review and appraisal. J Environ Q 17:519–527CrossRefGoogle Scholar
  60. 60.
    Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean 38:395–429CrossRefGoogle Scholar
  61. 61.
    Gonzalez Hidalgo JC, De Luis M, Raventos J, Sanchez JR (2003) Daily rainfall trend in the valencia region of Spain. Theoret Appl Climatol 75:117–130Google Scholar
  62. 62.
    Gong DY, Shi PJ, Wang JA (2004) Daily precipitation changes in the semi-arid region over northern China. J Arid Environ 59:771–784CrossRefGoogle Scholar
  63. 63.
    Del Rio S, Penas A, Fraile R (2005) Analysis of recent climatic variations in castle and leon (Spain). Atmos Res 73:69–85CrossRefGoogle Scholar
  64. 64.
    Partal T, Kahya E (2006) Trend analysis in Turkesh precipitation data. Hydrol Process 20:2011–2026CrossRefGoogle Scholar
  65. 65.
    Balling RC, Skindlow JA, Philips DA (1990) The impacts of increasing summer mean temperatures on extreme maximum and minimum temperatures in Phoenix, Arizona. J Clim 3:1491–1494CrossRefGoogle Scholar
  66. 66.
    Esterling DR, Evans LG, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 3:417–425CrossRefGoogle Scholar
  67. 67.
    Esterling DR, Horton B (1997) Maximum and minimum temperature trends for the globe. Science 227:364–367CrossRefGoogle Scholar
  68. 68.
    Nicholls N, Gruza GV, Jouzel J, Karl TR, Ogallo LA, Parker DE (1996) Observed climate variability and change. In: Houghton JT, Filho LGM, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change. Cambridge University Press, Cambridge, pp 133–192Google Scholar
  69. 69.
    Unkasevic D, Vujovic D, Tosic I (2005) Trends in extreme summer temperatures at Belgrade. Theoret Appl Climatol 82:199–205CrossRefGoogle Scholar
  70. 70.
    Mearns LO, Katz RW, Schneider SH (1984) Extreme high temperature events: changes in theri probabilities with changes in mean temperature. J Climatol Appl Meteorol 23:1601–1613CrossRefGoogle Scholar
  71. 71.
    Hansen J, Fung I, Lacis A, Rind D, Lebedeff S, Ruedy R, Russel G, Stone P (1988) Global climate change as forecast by goddard institute for space studies three dimensional model. J Geophys Res 93:9341–9354CrossRefGoogle Scholar
  72. 72.
    Ghosh S (2011) Impact of climate change and land use change on the flood vulnerability of Brahmaputra basin. Geospatial world forum, 18–21 Jan 2011, Hydarabad, IndiaGoogle Scholar
  73. 73.
    Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223CrossRefGoogle Scholar
  74. 74.
    Douville H, Chauvin F, Planton S, Royer J-F, Salas-Mélia D, Tyteca S (2002) Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Clim Dyn 20:45–68CrossRefGoogle Scholar
  75. 75.
    Intergovernmental Panel on Climate Change (IPCC) (2001a) In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Climate change 2001: impacts, adaptation and vulnerability, contribution of the working group II to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK, p 1032Google Scholar
  76. 76.
    McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001): Climate change 2001: Impacts, adaptation, and vulnerability. Cambridge University Press, p 1032Google Scholar
  77. 77.
    European Environment Agency (EEA) (2008) River floods (CLIM 017)—assessment published Sep 2008. Available online at: http://www.eea.europa.eu/data-and-maps/indicators/river-floods/river-floods-assessment-published-sep-2008. Verified 28 Nov 2011
  78. 78.
    Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hansen CD (eds) (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  79. 79.
    Brázdil R, Kotyza O, Dobrovolný P (2006) July 1432 and August 2002–two millennial floods in Bohemia? Hydrol Sci J 51(5):848–863Google Scholar
  80. 80.
    Cyberski J, Grześ M, Gutry-Korycka M, Nachlik E, Kundzewicz Z (2006) History of floods on the river Vistula. Hydrol Sci J 51(5):799–817Google Scholar
  81. 81.
    Kundzewicz ZW (2008) Flood risk and vulnerability in the changing climate, annals of Warsaw university of life sciences—SGGW. Land Reclam 39:21–30Google Scholar
  82. 82.
    Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) No upward trends in the occurence of extreme floods in central Europe. Nature 425:166–169CrossRefGoogle Scholar
  83. 83.
    Palmer TN, Räisänen J (2002) Quantifying the risk of extreme seasonal precipitation in a changing climate. Nature 415:512–514CrossRefGoogle Scholar
  84. 84.
    Kay AL, Jones RG, Reynard NS (2006) RCM rainfall for UK flood frequency estimation. II. Climate change results. J Hydrol 318:163–172CrossRefGoogle Scholar
  85. 85.
    Graham LP, Andre′asson J, Carlsson B (2007) Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—a case study on the Lule river basin. Clim Change 81:293–307Google Scholar
  86. 86.
    Booij MJ (2005) Impact of climate change on river flooding assessed with different spatial model resolutions. J Hydrol 303:176–198CrossRefGoogle Scholar
  87. 87.
    Shabalova M, Van Deursen W, Buishand T (2003) Assessing future discharge of the river Rhine using RCM integrations and a hydrological model. Clim Res 23:233–246CrossRefGoogle Scholar
  88. 88.
    Lehner B, Doll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental integrated analysis. Clim Change 75:273–299CrossRefGoogle Scholar
  89. 89.
    Jain S, Lall U (2000) Magnitude and timing of annual maximum floods: trends and large scale climatic associations for the Blacksmith Fork River, Utah. Water Resour Res 36:3641–3651CrossRefGoogle Scholar
  90. 90.
    Sharma KP, Moore B, Vorosmarty CJ (2000) Anthropogenic, climatic and hydrological trend in the Kosi basin. Himalaya, Clim Change 47:141–165CrossRefGoogle Scholar
  91. 91.
    Kothyari UC, Singh VP (1996) Rainfall and temperature trends in India. Hydrol Process 10:357–372CrossRefGoogle Scholar
  92. 92.
    Meher-Homji VM (1991) Probable impact of deforestation on hydrological processes. Clim Change 19:163–173CrossRefGoogle Scholar
  93. 93.
    Malet J-P, Maquaire O, Remaitre A, Thiery Y, Peyron M, Waeckel C (2010) Landslide hazard and risk assessment in the Barcelonnette basin, Mountain risks, research training networks, Causeries de L’e’te’—Barcelonnette, 23 June 2010Google Scholar
  94. 94.
    Buma JT, Dehn M (1996) Development of a method for predicting the impact of climate change on slope stability, Workshop on landslide and flash flood, Barcelonnette—Vaison la Romaine 30 Sept–3 Oct 1996Google Scholar
  95. 95.
    Buma JT, Dehn M (2000) Impact of climate change on landslide in South East France, simulated using different GCM scenarios and downscaling methods for local precipitation. Clim Res 15:69–81CrossRefGoogle Scholar
  96. 96.
    Kundzewicz ZW, Schellnhuber H-J (2004) Floods in the IPCC TAR perspective. Nat Hazards 31:111–128CrossRefGoogle Scholar
  97. 97.
    Schumann G, Hostache R, Puech C, Hoffmann L, Matgen P, Pappenberger F, Pfister L (2007) High-resolution 3-D flood information from radar imagery for flood hazard management. IEEE Trans Geosci Remote Sens 45(6):1715–1725Google Scholar
  98. 98.
    Van Stokkom HTC, Smits AJM, Leuven RSEW (2005) Flood defence in the Netherlands: a new era, a new approach. Water Int 30:76–87CrossRefGoogle Scholar
  99. 99.
    Yuan F, Sawaya K, Loeffelholz B, Bauer M (2005) Land cover classification and change analysis of the twin cities (Minnesota) metropolitan area by multitemporal landsat remote sensing. Remote Sens Environ 98:317–328CrossRefGoogle Scholar
  100. 100.
    Brockerhof M (2000) An urbanizing world. Population Bull 55(3):1–44Google Scholar
  101. 101.
    Orr HG, Carling PA (2006) Hydro-climatic and land use changes in the river Lune catchment, North West England, implications for catchment management. River Res Appl 22(2):239–255Google Scholar
  102. 102.
    Rosso R, Rulli MC (2002). An integrated simulation method for flash-flood risk assessment: 2. Effects of changes in land-use under a historical perspective. Hydrol Earth Syst Sci 6(2):285–294Google Scholar
  103. 103.
    Tollan A (2002) Land-use change and floods: what do we need most, research or management? Water Sci Technol 45(8):183–190Google Scholar
  104. 104.
    Patric JH, Reinhart GK (1971) Hydrologic effects of deforesting two mountain watersheds in west Virginia. Water Resour Res 7(5):1182–1188Google Scholar
  105. 105.
    Bannister EN (1979) Impact of road networks on south eastern Michigan lakeshore drainage. Water Resour 15:1515–1520CrossRefGoogle Scholar
  106. 106.
    Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River. Southeast Amazonia, J Hydrol 283:206–217Google Scholar
  107. 107.
    Brath A, Montanari A (2000) Effects of the spatial variability of soil infiltration capacity in distributed rainfall runoff modelling. Hydrol Process 14:2779–2794CrossRefGoogle Scholar
  108. 108.
    Naef F, Scherrer S, Weiler M (2002) A process based assessment of the potential to reduce flood runoff by land use change. J Hydrol 267(1–2):74–79Google Scholar
  109. 109.
    Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23CrossRefGoogle Scholar
  110. 110.
    Beighley RE, Moglen GE (2002) Trend assessment in rainfall runoff behaviour in urbanizing watersheds. J Hydrol Eng 7:27–34CrossRefGoogle Scholar
  111. 111.
    Luft G, Morgenschweis G, Vogelbacher A (1982) The effects of large-scale terracing on hydrological processes, Presentation of first results of a study comparing two small experimental basins on the Kaiserstuhl-Mountain. Proceedings of symposium on hydrological research basins, Sonderheft Landeshydrologie, Bern, pp 543–553Google Scholar
  112. 112.
    Ranzi R, Bochicchio M, Bacchi B (2002) Effects on floods of recent afforestation and urbanisation in the Mella River (Italian Alps). Hydrol Earth Syst Sci 6:239–253CrossRefGoogle Scholar
  113. 113.
    Peck AJ, Williamson DR (1987) Effects of forest clearing on groundwater. J Hydrol 94:47–65CrossRefGoogle Scholar
  114. 114.
    Armando B, Monanari A, Moretti G (2006) Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). J Hydrol 324:141–153CrossRefGoogle Scholar
  115. 115.
    Sullivan A, Ternan JL, Williams AG (2004) Land use change and hydrological response in the camel catchment. Cornwall Appl Geogr 24(2):119–137Google Scholar
  116. 116.
    De Roo APJ, Schmuck G, Perdigao V, Thielen J (2003) The influence of historic land use changes and future planned land use scenarios on floods in the oder catchment. Phys Chem Earth (B) 28(33–36):1291–1300Google Scholar
  117. 117.
    Reynard NS, Prudhomme C, Crooks SM (2001) The flood characteristics of large UK rivers: potential effects of changing climate and land use. Clim Change 48:343–359CrossRefGoogle Scholar
  118. 118.
    McMillan HK (2002) The estimation of discharges in ungauged sub-catchments of the River Eden in Cumbria, Unpublished Master Thesis, Lancaster UniversityGoogle Scholar
  119. 119.
    Bultot F, Dupriez GL, Gellens D (1990) Simulation of land-use changes and impacts on the water balance, a case study for Belgium. J Hydrol 114:327–348CrossRefGoogle Scholar
  120. 120.
    Eiker E, Davis DW, Goldman DM (2000) Application of risk-based analysis to planning reservoir and levee flood damage reduction systems. Us Army Corps of Engineers Hydrologic Engineering Center (HEC), USA, pp 1–30Google Scholar
  121. 121.
    Remaitre A, Malet J-P (2010) The effectiveness of torrent check dams to control channel instability: example of debris-flow events in clay shales. In: Garcia CC, Lenzi MA (eds) Check dams, morphological adjustments and erosion control in torrential streams. Nova Science Publishers Inc., New York, pp 211–237Google Scholar
  122. 122.
    Bravard J-P (1986) Le Rh6ne, du Leman a Lyon. p 450, La Manufacture, Lyon. Peiry 1988 (In French)Google Scholar
  123. 123.
    Bravard J-P (1989) La metamorphose des rivieres des Alpes francaises a la fin du moyen-age et a l’epoque moderne. Bull Soc Geog Liege 25:145–157 (In French)Google Scholar
  124. 124.
    Schumm SA (1977) The fluvial system. Wiley, New York 338Google Scholar
  125. 125.
    Hey RD, Thorne CR (1986) Stable channels with mobile gravel-bed rivers. J Hydraul Eng 8:671–689CrossRefGoogle Scholar
  126. 126.
    Gonde R (1981) Les amenagements du lit de la Durance et l’evolution du milieu naturel, p 65. Report of Ministere de l’Environnement et du Cadre de Vie, Paris (In French)Google Scholar
  127. 127.
    Piegay H, Bravard JP, Dupont P (1994) Les ripisylves et les crues dans la France du sud‐est: de l’histoire a la gestion contemporaine. 23emes Journees de I’Hydraulique: Crues et inondations (ed. by Societ6 Hydrotechnique de France), pp 277–289. Nimes, France (In French)Google Scholar
  128. 128.
    Penning-Rowsell EC, Johnson C, Tunstall S, Tapsell S, Morris J, Chatterton J, Green C (2005) The benefits of flood and coastal risk management: a manual of assessment techniques. Middlesex University Press, LondonGoogle Scholar
  129. 129.
    Bhattacharya N (2010) Flood risk assessment in Barcelonnette, France, M.Sc. thesis, International Institute for Geo-information Science and Earth Observation (ITC), Twente University, Enschede, The NetherlandsGoogle Scholar
  130. 130.
    Alkema D (2007) Simulating floods, on the application of a 2D‐hydraulic model for flood hazard and risk assessment, Ph.D. Dissertation, International Institute for Geo‐information Science and Earth Observation (ITC), Twente University, Enschede, The Netherlands. ISBN 978 90 6164 263 3, Printed by ITC Printing DepartmentGoogle Scholar
  131. 131.
    Apel H, Thieken A, Merz B, Blöschl G (2006) A probabilistic modelling system for assessing flood risks. Nat Hazards 38:79–100CrossRefGoogle Scholar
  132. 132.
    Jain V, Sinha R (2006) Evaluation of geomorphic control on flood hazard through geomorphic instantaneous unit hydrograph. Current science associationGoogle Scholar
  133. 133.
    Boughton WC, Droop O (2003) Continuous simulation for design flood estimation—a review. Environ Model Softw 18(4):309–318Google Scholar
  134. 134.
    Plate EJ (2007) Flood risk management for setting priorities in decision making, Springer. Vasiliev OF, van Gelder PHAJM, Plate EJ, Bolgov MV (eds) Extreme hydrological events: new concepts for security. pp 21–44Google Scholar
  135. 135.
    World Meteorological Organization (WMO) (1981c) Meteorological and hydrological aspects of siting and operation of nuclear power plants, vol II Hydrological aspects, technical note no. 170, (WMONo. 550), Geneva, Switzerland, p 125Google Scholar
  136. 136.
    Klein Tank AMG, Wijngaard JB, Konnen GP, Bohm R, Demaree G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern‐Hansen C, Heino R, Bessemoulin P, Muller‐Westermeier G, Tzanakou M, Szalai S, Palsdottir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, VanEngelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, López JA, Dahlstrom B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th‐century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453Google Scholar
  137. 137.
    Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe. J Clim 16:3665–3680Google Scholar
  138. 138.
    Frich P, Alexander LV, Della‐Marta P, Gleason B, Haylock M, Tankand AMGK, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212Google Scholar
  139. 139.
    Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin D, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vázquez Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:1–22CrossRefGoogle Scholar
  140. 140.
    Norrant C, Douguédroit A (2006) Monthly and daily precipitation trends in the mediterranean. Theor Appl Climatol 83:89–106Google Scholar
  141. 141.
    Piegay H, Salvador P‐G (1997) Contemporary floodplain forest evolution along the middle Ubaye river. Southern Alps, France, Global Ecology and Biogeography Letters 6:397–406Google Scholar
  142. 142.
    Demontzey P (1882) Traite pratique de reboisement et du gazonnement des montagnes. J. Rothschild, Paris (In French), p 528Google Scholar
  143. 143.
    Lecarpentier C (1963) La crue de Juin 1957 en Ubaye et ses conséquences morphodynamiques. Ph.D. Dissertation, Faculty of Geography, Strasbourg University, p 319 (In French)Google Scholar
  144. 144.
    Sclafert T (1933) A propos du d6boisement des Alpes du Sud. Ann Geogr 42:266–277 (In French)Google Scholar
  145. 145.
    Salvador PG (1991) Le theme de la metamorphosefluviale dans lesplaines alluviales du Rh6ne et de l’Isere (Bassin de Malville et Ombilic de Moirans, Bas‐Dauphine), p 529. Th&se de geographie, Universite Lyon III, Lyon (In French)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Geography and Regional ResearchUniversity of ViennaViennaAustria

Personalised recommendations