Advertisement

Neglected Oil Crop Biotechnology

  • Sharad Tiwari
  • Sunil Kumar
Chapter

Abstract

Global food security has become increasingly dependent on only a handful of crops cultivated intensively leading to crop replacement and a massive reduction in the number of species and diversity of crops. This poses a threat to local and global food security because the replaced indigenous crops are often essential for low input agriculture, have unique nutritional value, and contain diversity of locally adapted genotypes with resistance to a wide array of biotic and abiotic stresses. Most of these plant species are important locally or regionally only, and are known as ‘minor’, ‘neglected’, ‘underexploited’ or ‘underutilized’ crops. Like many other crops, production of oilseeds has not improved significantly due to their susceptibility to pests, sensitivity to abiotic stresses and low nutrient use efficiency. An approach for meeting the increasing demand for vegetable oils will be to introduce new or underutilized oilseed crops that are more suited for cultivation on less fertile land that do not support production of major oilseed crops. A need also exists for dedicated non-food oilseed crops that can be used for metabolic engineering of novel oil compositions for industrial applications. A number of oilseeds have recently received attention for their potential to fill one or more of these niches. These include Ironweed (Vernonia galamensis), crambe (Crambe abyssinica), desert mustard (Lesquerella fendleri), niger (Guizotia abyssinica), camelina (Camelina sativa), the Ethiopian mustard (Brassica carinata) and Sesame (Sesamum indicum). In this chapter emphasis has been given to current biotechnology research and progress for the improvement of these neglected oil crops. Agricultural biotechnology is creating new tools to tackle the problems of crop improvement, rural poverty, employment and income generation by helping to enhance farm productivity and production, improve quality, and explore marketing opportunities in newer ways. Technology like tissue culture provides the means for the culture of protoplasts, ovules and embryos used to create new genetic variation by overcoming reproductive barriers between distantly related crop species and haploid production by the culture of anthers and microspores to shorten the selection cycle in a breeding programme. Characterization of genetic diversity by molecular markers is important for devising effective sampling and conservation strategies. Molecular markers can also be used to certify varieties, to determine the presence or absence of diseases and development of linkage maps for identifying quantitative trait loci and marker assisted selection. Transferred genes through genetic engineering may contribute to a range of properties, including resistance/tolerance to biotic and abiotic factors, improved nutritional status and better management options.

Keywords

Amplify Fragment Length Polymorphism Inter Simple Sequence Repeat Erucic Acid Hairy Root Culture Hydroxy Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

NAA

α- napthaleneacetic acid

BA

Benzyl adenine

MS

Murashige and Skoog

TDZ

Thidiazuron

2-ip

N6-[2-isopentenyl] adenine

KN

6-furfurylaminopurine

IBA

Indole-3-butyric acid

2, 4-D

2, 4-dichlorophenoxyacetic acid

AFLP

Amplified fragment length polymorphism

MAS

Marker assisted selection

EST

Expressed sequence tags

DGAT

Diacylglycerol acyltransferase

GISH

Genomic in situ hybridization

References

  1. Abdellatef E, Sirelkhatem R, Ahmed MMM, Radwan KH, Khalafalla MM (2008) Study of genetic diversity in Sudanese sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Afr J Biotechnol 7:4423–4427Google Scholar
  2. Abdellatef E, Ahmed MMM, Daffalla HM, Khalafalla MM (2010) Enhancement of adventitious shoot regeneration in sesame (Sesamum indicum L.) cultivar promo KY using ethylene inhibitors. J Phytol 2:61–67Google Scholar
  3. Adda S, Reddy TP, Kavi Kishor PB (1993) Somatic embryogenesis and organogenesis in Guizotia abyssinica. In Vitro Cell Dev Biol-Plant 30:104–107Google Scholar
  4. Adda S, Reddy TP, Kavi Kishor PB (1994) Androclonal variation in niger (Guizotia abyssinica Cass). Euphytica 79:59–64CrossRefGoogle Scholar
  5. Agarwal A, Pant T, Ahmed Z (2010) Camelina sativa: a new crop with biofuel potential introduced in india. Curr Sci 99:1194–1195Google Scholar
  6. Ali GM, Yasumoto S, Katsuta MS (2007) Assessment of genetic diversity in sesame (Sesamum indicum L.) detected by amplified fragment length polymorphism markers. J Biotechnol 10:12–23Google Scholar
  7. Anonymous (2008) World Sesame situation, American Sesame Growers Association. http://www.sesamegrowers.org/worldstatusofsesame.htm. Accessed 15 Jan 2008
  8. Arora R, Bhojwani SS (1988) Production of androgenic plants through pollen embryogenesis in anther cultures of Brassica carinata A. Braun. Biol Plant 30:25–29CrossRefGoogle Scholar
  9. Ashri A (1987) Sesame. In: Robbelen G, Downey RK, Ashri A (eds) Oil crops of the world: their breeding and utilization. McGraw-Hill, New YorkGoogle Scholar
  10. Babic V, Datla RS, Scoles GJ, Keller WA (1998) Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17:183–188CrossRefGoogle Scholar
  11. Baskaran P, Jayabalan N (2006) In vitro mass propagation and diverse callus orientation on Sesamum indicum L.-an important oil plant. J Agric Technol 2:259–269Google Scholar
  12. Baye T, Becker HC, Witzke-Ehbrecht SV (2005) Vernonia galamensis, a natural source of epoxy oil: variation in fatty acid composition of seed and leaf lipids. Ind Crop Prod 21:257–261CrossRefGoogle Scholar
  13. Bedigian D, Harlan JR (1986) Evidence for cultivation of Sesame in the ancient world. Econ Bot 40:137–154CrossRefGoogle Scholar
  14. Bekele E, Geleta M, Dagne K, Jones AL, Barnes I, Bradman N, Thomas MG (2007) Molecular phylogeny of genus Guizotia (Asteraceae) using DNA sequences derived from ITS. Genet Resour Crop Evol 54:1419–1427CrossRefGoogle Scholar
  15. Belay S, Rier JP, Ayorinde FO (1989) Preliminary observation of the chemical composition of callus derived from immature seeds of Vernonia galamensis, Var. Ethiopica, Gilbert. J Am Oil Chem Soc 66:828CrossRefGoogle Scholar
  16. Bhat JG, Murthy HN (2007) Factors affecting in vitro gynogenic haploid production in niger (Guizotia abyssinica (L. f.) Cass.). Plant Growth Regul 52:241–248CrossRefGoogle Scholar
  17. Bhat JG, Murthy HN (2008) Haploid plant regeneration from unpollinated ovule cultures of niger (Guizotia abyssinica (L. f.) Cass.). Russ J Plant Physiol 55:241–245CrossRefGoogle Scholar
  18. Biesaga-Koscielniak J, Koscielniak J, Filek M, Janeczko A (2008) Rapid production of wheat cell suspension cultures directly from immature embryos. Plant Cell Tiss Organ Cult 94:139–147CrossRefGoogle Scholar
  19. Bouck A, Vision T (2007) The molecular ecologist’s guide to expressed sequence tags. Mol Ecol 16:907–924PubMedCrossRefGoogle Scholar
  20. Brar GS, Ahuja L (1979) Sesame: its culture, genetics, breeding and biochemistry. Annu Rev Plant Sci 1:245–313Google Scholar
  21. Broun P, Boddupalli S, Somerville C (1998) A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J 13:201–210PubMedCrossRefGoogle Scholar
  22. Carlson KD, Schneider WJ, Chang SP, Princen LH (1981) Vernonia galamensis seed oil: a new source for epoxy coatings. In: Pryde EH, Princen LH, Mukherjee KD (eds) New sources of fats and oils. American Oil Chemists’ Society, ChampaignGoogle Scholar
  23. Carlson KD, Chaudhry A, Bagby MO (1990) Analysis of oil and meal from Lesquerella fendleri seed. J Am Oil Chem Soc 67:438–442CrossRefGoogle Scholar
  24. CGIAR (2006) Enhancing the delivery of genomics research outcomes. Genomics research in the CGIAR: effective means of establishing platforms for genetic research. Science council of the consultative group for international agricultural research, the secretariat, Rome, ItalyGoogle Scholar
  25. Chae YA, Park SK, Anand IJ (1987) Selection in vitro for herbicide tolerant cell lines of Sesamum indicum 2: selection of herbicide tolerant calli and plant regeneration. Kor J Plant Breed 19:75–80Google Scholar
  26. Chattopadhyaya B, Banerjee J, Basu A, Sen SK, Maiti MK (2010) Shoot induction and regeneration using internodal transverse thin cell layer culture in Sesamum indicum L. Plant Biotechnol Rep 4:173–178CrossRefGoogle Scholar
  27. Chaudhary S, Parmenter DL, Moloney MM (1998) Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds. Plant Cell Rep 17:195–200CrossRefGoogle Scholar
  28. Chen GQ, Lin JT, Lu C (2011) Hydroxy fatty acid synthesis and lipid gene expression during seed development in Lesquerella fendleri. Ind Crop Prod 34:1286–1292CrossRefGoogle Scholar
  29. Cheng B, Wu G, Vrinten P, Falk K, Bauer J, Qiu X (2009) Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res. doi: 10.1007/s11248-009-9302-z Google Scholar
  30. Chhikara S, Dutta I, Paulose B, Jaiwal PK, Dhankher OP (2011) Development of an Agrobacterium-mediated stable transformation method for industrial oilseed crop Crambe abyssinica ‘BelAnn’. Ind Crop Prod. doi: 10.1016/j.indcrop.2011.07.021 Google Scholar
  31. Chun JA, Lee WH, Han MO, Lee JW, Yi YB, Goo YM, Lee SW, Bae SC, Cho KJ, Chung CH (2007) Molecular and biochemical characterizations of dehydroascorbate reductase from sesame (Sesamum indicum L.) hairy root cultures. J Agric Food Chem 55:6067–6073PubMedCrossRefGoogle Scholar
  32. Chun JA, Lee JW, Yi YB, Park GY, Chung CH (2009) Induction of hairy roots and characterization of peroxidase expression as a potential root growth marker in sesame. Prep Biochem Biotechnol 39:345–359PubMedCrossRefGoogle Scholar
  33. Chuong PV, Beversdorf WD (1985) High frequency embryogenesis through isolated microspore culture in Brassica napus L. and B. carinata Braun. Plant Sci 39:219–226CrossRefGoogle Scholar
  34. Chuong PV, Pauls KP, Beversdorf WD (1987) Protoplast culture and plant regeneration from Brassica carinata Braun. Plant Cell Rep 6:67–69CrossRefGoogle Scholar
  35. Chyan CL, Lee TT, Liu CP, Yang YC, Tzen JT, Chou WM (2005) Cloning and expression of a seed-specific metallothionein-like protein from sesame. Biosci Biotechnol Biochem 69:2319–2325PubMedCrossRefGoogle Scholar
  36. Dagne K, Cheng B, Heneen WK (2000) Number and sites of rDNA loci of Guizotia abyssinica (L. f.) Cass. as determined by fluorescence in situ hybridization. Hereditas 132:63–65PubMedCrossRefGoogle Scholar
  37. Daniel E (2008) Investigation of the genetic variability among land races of sesame from Ethiopia. MA Thesis, University of Hohenhein, Stuttgart, GermanyGoogle Scholar
  38. Dawson IK, Hedley PE, Guarino L, Jaenicke H (2009) Does biotechnology have a role in the promotion of underutilised crops? Food Policy 34:319–328CrossRefGoogle Scholar
  39. Demeke T, Lynch DR, Kawchuk LM, Kozub GC, Armstrong JD (1996) Genetic diversity of potato determined by random amplified polymorphic DNA analysis. Plant Cell Rep 15:662–667CrossRefGoogle Scholar
  40. Dempewolf H, Kane NC, Ostevik KL, Geleta M, Barker MS, Lai Z, Stewart ML, Bekele E, Engels JM, Cronk QB, Rieserberg LH (2010) Establishing genomic tools and resources for Guizotia abyssinica (L.f.) Cass.—the development of a library of expressed sequence tags, microsatellite loci, and the sequencing of its chloroplast genome. Mol Ecol Resour 10:1048–1058PubMedCrossRefGoogle Scholar
  41. Du XZ, Ge XH, Zhao ZG, Li ZY (2008) Chromosome elimination and fragment introgression and recombination producing intertribal partial hybrids from Brassica napus × Lesquerella fendleri crosses. Plant Cell Rep 27:261–271PubMedCrossRefGoogle Scholar
  42. Dykinga J (1999) A storybook future for lesquerella? Agric Res Mag 47:14–15Google Scholar
  43. Erickson LR, Straus NA, Beversdorf WD (1983) Restriction patterns reveal origins of chloroplast genomes in Brassica amphiploids. Theor Appl Genet 65:201–206CrossRefGoogle Scholar
  44. FAO (2004) Preliminary review of biotechnology in forestry, including genetic modification. Forest genetic resources working paper FGR/59E. Forest resources development service, Forest resources division, Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  45. FAO (2005) Food and Agricultural Organisation of the United Nations. FAOSTAT Database. http:/apps.fao.org/default.htm
  46. Ferrie AMR, Bethune TD (2011) A microspore embryogenesis protocol for Camelina sativa, a multi-use crop. Plant Cell Tiss Org Cult 106:495–501CrossRefGoogle Scholar
  47. Francisco-Ortega J, Fuertes-Aguilar J, Gómez-Campo C, Santos-Guerra A, Jansen RK (1999) Internal transcribed spacer sequence phylogeny of Crambe L. (Brassicaceae): molecular data reveal two old world disjunctions. Mol Phylogenet Evol 11:361–380PubMedCrossRefGoogle Scholar
  48. Furumoto T, Hoshikuma A (2011) Biosynthetic origin of 2-geranyl-1,4-naphthoquinone and its related anthraquinone in a Sesamum indicum hairy root culture. Phytochem 72:871–874CrossRefGoogle Scholar
  49. Furumoto T, Ohara T, Kubo T, Kawanami Y, Fukui H (2007) 2-Geranyl-1,4-naphthoquinone, a possible intermediate of anthraquinones in a Sesamum indicum hairy root culture. Biosci Biotechnol Biochem 71:2600–2602PubMedCrossRefGoogle Scholar
  50. Galasso I, Manca A, Braglia L, Martinelli T, Morello L, Breviario D (2010) h-TBP: an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz. Mol Breed. doi: 10.1007/s11032-010-9515-0
  51. Ganapathi TR, Nataraja K (1993) Effect of auxins and cytokinins on plant regeneration from hypocotyls and cotyledons of niger (Guizotia abyssinica). Biol Plant 35:209–215CrossRefGoogle Scholar
  52. Gangopadhyay G, Poddar R, Gupta S (1998) Micropropagation of sesame (Sesamum indicum L.) by in vitro multiple shoot production from nodal explants. Phytomorphology 48:83–90Google Scholar
  53. Gao HB, Wang Y, Gao F, Luo P (1998) Studies on the plant regeneration from single cell culture of Crambe abyssinica. Hereditas (Beijing) 20:50–52Google Scholar
  54. Gehringer A, Friedt W, Lühs W, Snowdon RJ (2006) Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49:1555–1563PubMedCrossRefGoogle Scholar
  55. Geleta M, Bryngelsson T, Bekele E, Dagne K (2007a) AFLP and RAPD analyses of genetic diversity of wild and/or weedy Guizotia (Asteraceae) from Ethiopia. Hereditas 144:53–62PubMedCrossRefGoogle Scholar
  56. Geleta M, Bryngelsson T, Bekele E, Dagne K (2007b) Genetic diversity of Guizotia abyssinica (L. f.) Cass. (Asteraceae) from Ethiopia as revealed by random amplified polymorphic DNA (RAPD). Genet Resour Crop Evol 54:601–614CrossRefGoogle Scholar
  57. George V, Bapat A, Rao PS (1987) In vitro Multiplication of Sesame (Sesamum indicum) through tissue culture. Ann Bot 60:17–21Google Scholar
  58. Getinet A, Sharma SM (1996) Niger, Guizotia abyssinica (L. f.) Cass. Promoting the conservation and use of underutilized and neglected crops. International Plant Genetic Resources Institute, Rome, pp 1–59Google Scholar
  59. Ghamkhar K, Croser J, Aryamanesh N, Campbell M, Kon’kova N, Francis C (2010) Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53:558–567PubMedCrossRefGoogle Scholar
  60. Hansen LN (1998) Intertribal somatic hybridization between rapid cycling Brassica oleracea L. and Camelina sativa (L.) Crantz. Euphytica 104:173–179CrossRefGoogle Scholar
  61. Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2010) Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Sci 178:510–516CrossRefGoogle Scholar
  62. Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2011) Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environ Exp Bot. doi: 10.1016/j.envexpbot.2011.07.004 Google Scholar
  63. Hatanaka T, Yu K, Hildebrand DF (2003) Cloning and expression of a Vernonia and Euphorbia diacylglycerol acyltransferase cDNAs. In: Murata N, Yamada M, Nishida I, Okuyama H, Sekiya J, Hajime W (eds) Advanced research on plant lipids. Kluwer Academic Publishers, DordrechtGoogle Scholar
  64. Hatanaka T, Shimizu R, Hildebrand DF (2004) Expression of a Stokesia laevis epoxygenase gene. Phytochemistry 65:2189–2196PubMedCrossRefGoogle Scholar
  65. Hema BP, Murthy HN (2008) Improvement of in vitro androgenesis in niger using amino acids and polyamines. Biol Plant 52:121–125CrossRefGoogle Scholar
  66. Hitz WD (1998) Fatty acid modifying enzymes from developing seeds of Vernonia galamensis. US Patent 5846784, December 8Google Scholar
  67. Horejsi T, Staub JE (1999) Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol 46:337–350CrossRefGoogle Scholar
  68. Hsiao ES, Lin LJ, Li FY, Wang MM, Liao MY, Tzen JT (2006) Gene families encoding isoforms of two major sesame seed storage proteins, 11S globulin and 2S albumin. J Agric Food Chem 54:9544–9550PubMedCrossRefGoogle Scholar
  69. Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, Rocher JD, Kiser J (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol. doi: 10.1186/1471-2229-10-233 PubMedGoogle Scholar
  70. Jadhav A, Katavic V, Marillia EF, Giblin EM, Barton DL, Kumar A, Sonntag C, Babic V, Keller WA, Taylor DC (2005) Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab Eng 7:215–220PubMedCrossRefGoogle Scholar
  71. Jadimath VG, Murthy HN, Pyati AN, Kumar HGA, Ravishankar BV (1998) Plant regeneration from leaf cultures of Guizotia abssinica (Niger) and Guizotia scabra. Phytomorphology 48:131–135Google Scholar
  72. Jain RK, Chowdhury JB, Sharma DR, Friedt W (1988) Genotypic and media effects on plant regeneration from cotyledon explant cultures of some Brassica species. Plant Cell Tiss Org Cult 14:197–206CrossRefGoogle Scholar
  73. Jaiswal SK, Hammatt N, Bhojwani SS, Cocking EC, Davey MR (1990) Plant regeneration from cotyledon protoplasts of Brassica carinata. Plant Cell Tiss Org Cult 22:159–165CrossRefGoogle Scholar
  74. James C (2009) Global status of commercialized biotech/GM crops. ISAAA briefs 41. ISAAA, IthacaGoogle Scholar
  75. Jiang JJ, Zhao XX, Tian W, Li TB, Wang YP (2009) Intertribal somatic hyprids between Brassica napus and Camelina sativa with high linolenic acid content. Plant Cell Tiss Org Cult 99:91–95CrossRefGoogle Scholar
  76. Jin UH, Chun JA, Han MO, Lee JW, Yi YB, Lee SW, Chung CH (2005) Sesame hairy root cultures for extra-cellular production of a recombinant fungal phytase. Prog Biochem Biophys 40:3754–3762Google Scholar
  77. Joshi AB (1961) Sesamum. A monograph. Indian Central Oilseed Committee, HyderabadGoogle Scholar
  78. Jourdan P, Salazar E (1993) Brassica carinata resynthesized by protoplast fusion. Theor Appl Genet 86:567–572CrossRefGoogle Scholar
  79. Kang J, Snapp AR, Lu C (2011) Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol Biochem 49:223–229PubMedCrossRefGoogle Scholar
  80. Kharenko OA, Zaharia LI, Giblin M, Čekić V, Taylor DC, Palmer CD, Abrams SR, Loewen MC (2011) Abscisic acid metabolism and lipid accumulation of a cell suspension culture of Lesquerella fendleri. Plant Cell Tiss Org Cult 105:415–422CrossRefGoogle Scholar
  81. Kim HY, Byeon GH (1991) Effect of growth regulators on organ cultures of sesame. J Subtrop Agric Res Dev 8:93–103Google Scholar
  82. Kim MK, Park SK, Chae YA (1987) Selection in vitro for herbicide tolerant cell lines of Sesamum indicum: effects of explants and hormone combinations on callus induction. Kor J Plant Breed 19:70–94Google Scholar
  83. Kinney AJ (2002) Perspectives on the production of industrial oils in genetically engineered oilseeds. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Marcel Dekker Inc., New YorkGoogle Scholar
  84. Kolte SJ (1985) Disease of annual edible oil seed crops. Vol II: Rapeseed-mustard and sesame diseases. CRC Press, Boca RatonGoogle Scholar
  85. Kumar HG, Murthy HN, Jadimath VG, Sheelavantmath SS, Pyati AN, Ravishankar BV (2000) Direct somatic embryogenesis and plantlet regeneration from leaf explants of niger, Guizotia abyssinica (L.f.) Cass. Ind J Exp Biol 38:1073–1075Google Scholar
  86. Kuvshinov V, Kanerva A, Koivu K, Pehu E, Kuvshinova S (2002, 2004) A transformation system in Camelina sativa. Patents WO 02/38779 A1 and US 2004/0031076 A1Google Scholar
  87. Laurentin H, Karlovsky P (2007) AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: identification, genetic relationship and comparison of AFLP informativeness parameters. Genet Resour Crop Evol 54:1437–1446CrossRefGoogle Scholar
  88. Laurentin H, Ratzinger A, Karlovsky P (2008) Relationship between metabolic and genomic diversity in sesame (Sesamum indicum L.). BMC Genomics 9:250–260PubMedCrossRefGoogle Scholar
  89. Lee JI, Park YH, Park YS, Kim BG (1985) Propagation of sesame (Sesamum. indicum L.) through shoot tip culture. Kor J Plant Breed 17:367–372Google Scholar
  90. Lee SY, Kim HS, Lee YT, Park CH (1988) Effect of growth regulators, cold pretreatment and genotype in anther culture of sesame (Sesamum indicum L.). Res Rep Rural Dev Adm Biotechnol 30:74–79Google Scholar
  91. Li X, Gao P, Gjetvaj B, Westcott N, Gruber MY (2009) Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure. Plant Sci 177:68–80CrossRefGoogle Scholar
  92. Li R, Yu K, Hildebrand DF (2010a) DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids. doi: 10.1007/s11745-010-3385-4 Google Scholar
  93. Li X, Ahlman A, Yan X, Lindgren H, Zhu LH (2010b) Genetic transformation of the oilseed crop Crambe abyssinica. Plant Cell Tiss Org Cult 100:149–156CrossRefGoogle Scholar
  94. Li X, Ahlman A, Lindgren H, Zhu LH (2011) Highly efficient in vitro regeneration of the industrial oilseed crop Crambe abyssinica. Ind Crop Prod 33:170–175CrossRefGoogle Scholar
  95. Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium -mediated transformation. Plant Cell Rep 27:273–278PubMedCrossRefGoogle Scholar
  96. Lu C, Napier JA, Clemente TE, Cahoon EB (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol 22:252–259PubMedCrossRefGoogle Scholar
  97. Marles MAS, Gruber MY, Scoles GJ, Muir AD (2003) Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry 62:663–672PubMedCrossRefGoogle Scholar
  98. Marquez-Lema A, Velasco L, Perez-Vich B (2010) Transferability, amplification quality, and genome specificity of microsatellites in Brassica carinata and related species. J Appl Genet 51:123–131PubMedCrossRefGoogle Scholar
  99. Márquez-Lema A, Fernández-Martínez JM, Pérez-Vich B, Velasco L (2008) Development and characterisation of a Brassica carinata inbred line incorporating genes for low glucosinolate content from B. juncea. Euphytica 164:365–375CrossRefGoogle Scholar
  100. Mary RJ, Jayabalan N (1997) Influence of growth regulators on somatic embryogenesis in sesame. Plant Cell Tiss Org Cult 49:67–70CrossRefGoogle Scholar
  101. Mietkiewska E, Brost JM, Giblin EM, Barton DL, Taylor DC (2007) Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet. Plant Biotechnol J 5:636–645PubMedCrossRefGoogle Scholar
  102. Mietkiewska E, Hoffman TL, Brost JM, Giblin EM, Barton DL, Francis T, Zhang Y, Taylor DC (2008) Hairpin-RNA mediated silencing of endogenous FAD2 gene combined with heterologous expression of Crambe abyssinica FAE gene causes an increase in the level of erucic acid in transgenic Brassica carinata seeds. Mol Breed 22:619–627CrossRefGoogle Scholar
  103. Moon H, Smith MA, Kunst L (2001) A condensing enzyme from the seeds of Lesquerella fendleri that specifically elongates hydroxy fatty acids. Plant Physiol 127:1635–1643PubMedCrossRefGoogle Scholar
  104. Moon H, Chowrira G, Rowland O, Blacklock BJ, Smith MA, Kunst L (2004) A root-specific condensing enzyme from Lesquerella fendleri that elongates very-long-chain saturated fatty acids. Plant Mol Biol 56:917–927PubMedCrossRefGoogle Scholar
  105. Murthy HN, Kumar AHG, Paek KY (2000) Anther culture of niger. Kor J Plant Tiss Cult 27:353–358Google Scholar
  106. Murthy HN, Jeong JH, Choi YE, Paek KY (2003) Agrobacterium-mediated transformation of niger [Guizotia abyssinica (L. f.) Cass.] using seedling explants. Plant Cell Rep 21:1183–1187PubMedCrossRefGoogle Scholar
  107. Nagella P, Hosakatte NM, Ravishankar KV, Hahn E, Paek K (2008) Analysis of genetic diversity among Indian niger [Guizotia abyssinica (L. f.) Cass.] cultivars based on randomly amplified polymorphic DNA markers. Electron J Biotechnol 11:1–5CrossRefGoogle Scholar
  108. Naik PM, Murthy HN (2010) Somatic embryogenesis and plant regeneration from cell suspension culture of niger (Guizotia abyssinica Cass.). Acta Physiol Plant 32:75–79CrossRefGoogle Scholar
  109. Narasimhulu SB, Chopra VL (1987) Plant regeneration from callus culture of Brassica carinata A. Br. and its implication to improvement of oilseed Brassica. Plant Breed 99:49–55CrossRefGoogle Scholar
  110. Narasimhulu SB, Chopra VL (1988) Species specific shoot regeneration response of cotyledonary explants of Brassicas. Plant Cell Rep 7:104–106CrossRefGoogle Scholar
  111. Narasimhulu SB, Kirti PB, Prakash S, Chopra VL (1992a) Rapid and efficient plant regeneration from hypocotyl protoplasts of Brassica carinata. Plant Cell Rep 11:159–162Google Scholar
  112. Narasimhulu SB, Kirti PB, Prakash SV, Chopra VL (1992b) Shoot regeneration in stem explants and its amenability to Agrobacterium-mediated gene transfer in Brassica carinata. Plant Cell Rep 11:359–362Google Scholar
  113. Narasimhulu SB, Kirti PB, Bhatt SR, Prakash S, Chopra VL (1994) Intergeneric protoplast fusion between Brassica carinata and Camelina sativa. Plant Cell Rep 13:657–660CrossRefGoogle Scholar
  114. Ncube I, Read JS (1995) Evaluation of Vernonia galamensis lipase (acetone powder) for use in biotechnology. Ind Crop Prod 3:285–292CrossRefGoogle Scholar
  115. Nguyen T, Liu X, Derocher J (2011) Floral dip method for transformation of Camelina. US Patent Application 20110145950. Date 16-06-2011Google Scholar
  116. Nikam TD, Shitole MG (1993) Regeneration of niger (Guizotia abyssinica Cass.) CV Sahyadri from seedling explants. Plant Cell Tiss Org Cult 32:345–349CrossRefGoogle Scholar
  117. Nikam TD, Shitole MG (1997) In vitro plant regeneration from callus of niger (Guizotia abyssinica Cass.) cv. Sahyadri. Plant Cell Rep 17:155–158CrossRefGoogle Scholar
  118. Nitovs’ka IO, Shakhovs’kyĭ AM, Cherep MN, Horodens’ka MM, Kuchuk MV (2006) Construction of the cybrid transplastomic Brassica napus plants containing Lesquerella fendleri chloroplasts. Tsitol Genet 40:3–11Google Scholar
  119. Nugent JM, Palmer JD (1988) Location, identity, amount and serial entry of chloroplast DNA sequences in crucifer mitochondrial DNAs. Curr Genet 14:501–509PubMedCrossRefGoogle Scholar
  120. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155PubMedCrossRefGoogle Scholar
  121. Ogasawara T, Chiba K, Tada M (1993) Production and high yield of napthoquinone by a hairy root culture of Sesamum indicum. Phytochem 33:1095–1098CrossRefGoogle Scholar
  122. Ologunde MO, Ayorinde FO, Shepard RL (1990) Chemical evaluation of defatted Vernonia galamensis meal. J Am Oil Chem Soc 67:92–94CrossRefGoogle Scholar
  123. Ovcharenko O, Momot V, Cherep N, Sheludko Y, Komarnitsky I, Rudas V, Kuchuk N (2011) Transfer of transformed Lesquerella fendleri (Gray) Wats chloroplasts into Orychophragmus violaceus (L.) by protoplast fusion. Plant Cell Tiss Org Cult 105:21–27CrossRefGoogle Scholar
  124. Palmer CD, Keller WA (2011) Somatic embryogenesis in Crambe abyssinica Hochst. ex R.E. Fries using seedling explants. Plant Cell Tiss Org Cult 104:91–100CrossRefGoogle Scholar
  125. Parsaeian M, Mirlohi A, Saeidi G (2011) Study of genetic variation in sesame (Sesamum indicum L.) using agro-morphological traits and ISSR markers. Genetika 47:359–367PubMedGoogle Scholar
  126. Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10:108PubMedCrossRefGoogle Scholar
  127. Perdue RE (1988) Systematic botany in the development of Vernonia galamensis as a new industrial oilseed crop for the semi-arid tropics. Symb Bot Ups 28:125–135Google Scholar
  128. Perdue RE, Carlson KD, Gilbert MG (1986) Vernonia galamensis potential new crop source of epoxy acid. Econ Bot 40:54–68CrossRefGoogle Scholar
  129. Petros Y, Merker A, Zeleke H (2007) Analysis of genetic diversity of Guizotia abyssinica from Ethiopia using inter simple sequence repeat markers. Hereditas 144:18–24PubMedCrossRefGoogle Scholar
  130. Pham TD, Geleta M, Bui TM, Bui TC, Merker A, Carlsson AS (2011) Comparative analysis of genetic diversity of sesame (Sesamum indicum L.) from Vietnam and Cambodia using agro-morphological and molecular markers. Hereditas 148:28–35PubMedCrossRefGoogle Scholar
  131. Ploschuk EL, Cerdeiras G, Windauer L, Dierig DA, Ravetta DA (2003) Development of alternative Lesquerella species in Patagonia (Argentina): potential of L. angustifolia. Ind Crop Prod 18:1–6CrossRefGoogle Scholar
  132. Prince JP, Lackney VK, Angeles C, Blauth JR, Kyle MM (1995) A survey of DNA polymorphism within the genus Capsicum and the fingerprinting of pepper cultivars. Genome 38:224–231PubMedCrossRefGoogle Scholar
  133. Purakayastha TJ, Viswanath T, Bhadraray S, Chhonkar PK, Adhikari PP, Suribabu K (2008) Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremediation 10:61–72PubMedCrossRefGoogle Scholar
  134. Rajeswari S, Thiruvengadam V, Ramaswamy NM (2010) Production of interspecific hybrids between Sesamum alatum Thonn and Sesamum indicum L. through ovule culture and screening for phyllody disease resistance. S Afr J Bot 76:252–258CrossRefGoogle Scholar
  135. Ram R, Catlin D, Romero J, Cowley C (1990) Sesame: new approaches for crop improvement. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, PortlandGoogle Scholar
  136. Ramalema SP, Shimelis H, Ncube I, Kunert KK, Mashela PW (2010) Genetic analysis among selected vernonia lines through seed oil content, fatty acids and RAPD DNA markers. Afr J Biotechnol 9:117–122Google Scholar
  137. Rao KR, Vaidyanath K (1997a) Callus induction and morphogenesis in sesame (Sesamum indicum L.). Adv Plant Sci 10:21–26Google Scholar
  138. Rao KR, Vaidyanath K (1997b) Induction of multiple shoots from seedling shoot tips of different varieties of Sesamum. Ind J Plant Physiol 2:257–261Google Scholar
  139. Rao KR, Kavi Kishor PB, Vaidyanath K (2002) Biotechnology of sesame-an oil seed crop. Plant Cell Biotechnol Mol Biol 3:101–110Google Scholar
  140. Reed DW, Taylor DC, Covello PS (1997) Metabolism of hydroxy fatty acids in developing seeds in the genera Lesquerella (Brassicaceae) and Linum (Linaceae). Plant Physiol 114:63–68PubMedGoogle Scholar
  141. Sabharwal PS, Dolezel J (1993) Interspecific hybridization in Brassica: application of flow cytometry for analysis of ploidy and genome composition in hybrid plants. Biol Plant 35:169–177CrossRefGoogle Scholar
  142. Schrader-Fischer G, Apel K (1994) Organ-specific expression of highly divergent thionin variants that are distinct from the seed-specific crambin in the crucifer Crambe abyssinica. Mol Gen Genet 245:380–389PubMedCrossRefGoogle Scholar
  143. Seither C, Avdiushko S, Hildebrand D (1997) Isolation of cytochrome P-450 genes from Vernonia galamensis. In: Williams JP, Khan MU, Lem NW (eds) Physiology, biochemistry and molecular biology of plant lipids. Kluwer Academic Publishers, DordrechtGoogle Scholar
  144. Seo HY, Kim YJ, Park TI, Kim HS, Yun SJ, Park KH, Oh MK, Choi MY, Paik CH, Lee YS, Choi YE (2007) High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L. In Vitro Cell Dev Biol Plant 43:209–214CrossRefGoogle Scholar
  145. Sharma M, Pareek LK (1998) Direct shoot bud differentiation from different explants of in vitro regenerated shoots in sesame. J Phytol Res 11:161–163Google Scholar
  146. Sharma SN, Kumar V, Mathur S (2009) Comparative analysis of RAPD and ISSR markers for characterization of sesame (Sesamum indicum L) genotypes. J Plant Biochem Biotechnol 18:266–271Google Scholar
  147. Sigareva MA, Earle ED (1999) Camalexin induction in intertribal somatic hybrids between Camelina sativa and rapid-cycling Brassica oleracea. Theor Appl Genet 98:164–170CrossRefGoogle Scholar
  148. Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–222PubMedCrossRefGoogle Scholar
  149. Skarzhinskaya M, Landgren M, Glimelius K (1996) Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray) Wats. Theor Appl Genet 93:1242–1250CrossRefGoogle Scholar
  150. Soltis DE, Soltis PS, Doyle JJ (1998) Molecular systematics of plants II: DNA sequencing. Kluwer Press, DordrechtCrossRefGoogle Scholar
  151. Subramanian B, Bansal VK, Kav NNV (2005) Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. J Agric Food Chem 53:313–324PubMedCrossRefGoogle Scholar
  152. Suh MC, Kim MJ, Hur CG, Bae JM, Park YI, Chung CH, Kang CW, Ohlrogge JB (2003) Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. Plant Mol Biol 52:1107–1123PubMedCrossRefGoogle Scholar
  153. Sujatha M (1997) In vitro adventitious shoot regeneration for effective maintenance of male sterile niger (Guizotia abyssinica (L.f.) Cass.). Euphytica 93:89–95CrossRefGoogle Scholar
  154. Tang TZ, Niu YZ, Shui HX (2006) Cytological observation on intergeneric hybrid between Brassica chinensis and Crambe abyssinica. Yi Chuan 28:189–194PubMedGoogle Scholar
  155. Taskin KM, Turgut K (1997) In vitro regeneration of sesame (Sesamum indicum L.). Turk J Bot 21:15–18Google Scholar
  156. Taskin KM, Ercan AG, Turgut K (1999) Agrobacterium tumefaciens—mediated transformation of sesame (Sesamum indicum L.). Turk J Bot 23:291–295Google Scholar
  157. Tattersall A, Millam S (1999) Establishment and in vitro regeneration studies of the potential oil crop species Camelina sativa. Plant Cell Tiss Org Cult 55:147–149CrossRefGoogle Scholar
  158. Teklewold A, Becker HC (2006a) Geographic pattern of genetic diversity among 43 Ethiopian mustard (Brassica carinata A. Braun) accessions as revealed by RAPD analysis. Genet Resour Crop Evol 53:1173–1185CrossRefGoogle Scholar
  159. Teklewold A, Becker HC (2006b) Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun). Theor Appl Genet 112:752–759PubMedCrossRefGoogle Scholar
  160. Thompson AE, Dierig DA (1994) Initial selection and breeding of Lesquerella fendleri L., a new industrial oil seed. Ind Crop Prod 2:91–106Google Scholar
  161. Tiwari S, Kumar S, Gontia I (2011) Biotechnological approaches for sesame (Sesamum indicum L.) and niger (Guizotia abyssinica L.f. Cass.). Asia-Pac J Mol Biol Biotechnol 19:2–9Google Scholar
  162. Tomasi P, Dierig D, Dahlquist G (2002) An ovule culture technique for producing interspecific Lesquerella hybrids. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, AlexandriaGoogle Scholar
  163. Uzun B, Cagirgan MI (2009) Identification of molecular markers linked to determinate growth habit in sesame. Euphytica 166:379–384CrossRefGoogle Scholar
  164. Uzun B, Lee D, Donini P, Cagirgan MI (2003) Identification of a molecular marker linked to the closed capsule mutant trait in sesame using AFLP. Plant Breed 122:95–97CrossRefGoogle Scholar
  165. Volis S, Mendlinger S, Shulgina I, Oluoch M (2009) Genetic diversity in Tanzanian accessions of Brassica carinata A. Braun. Int J Plant Breed 3:86–91Google Scholar
  166. Vollmann J, Grausgruber H, Stift G, Dryzhyruk V, Lelley T (2005) Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breed 124:446–453CrossRefGoogle Scholar
  167. Wang Y, Peng L (1998) Intergeneric hybridization between Brassica species and Crambe abyssinica. Euphytica 101:1–7CrossRefGoogle Scholar
  168. Wang Y, Sonntag K, Rudloff E (2003) Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica. Theor Appl Genet 106:1147–1155PubMedGoogle Scholar
  169. Wang Y, Snowdon RJ, Rudloff E, Wehling P, Friedt W, Sonntag K (2004) Cytogenetic characterization and fae1 gene variation in progenies from asymmetric somatic hybrids between Brassica napus and Crambe abyssinica. Genome 47:724–731PubMedCrossRefGoogle Scholar
  170. Wang Y, Sonntag K, Rudloff E, Wehling P, Snowdon RJ (2006) GISH analysis of disomic Brassica napusCrambe abyssinica chromosome addition lines produced by microspore culture from monosomic addition lines. Plant Cell Rep 25:35–40PubMedCrossRefGoogle Scholar
  171. Wang W, Wang C, Huang BL, Huang B (2008) Agrobacterium tumefaciens-mediated transformation of Lesquerella fendleri L., a potential new oil crop with rich lesquerolic acid. Plant Cell Tiss Org Cult 92:165–171CrossRefGoogle Scholar
  172. Warwick SI, Gugel RK (2003) Genetic variation in the Crambe abyssinicaC. hispanicaC. glabrata complex. Genet Resour Crop Evol 50:291–305CrossRefGoogle Scholar
  173. Warwick SI, Gugel RK, McDonald T, Falk KC (2006) Genetic variation of Ethiopian mustard (Brassica carinata A. Braun) germplasm in Western Canada. Genet Resour Crop Evol 53:297–312CrossRefGoogle Scholar
  174. Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451PubMedCrossRefGoogle Scholar
  175. Weiss EA (1971) Castor, sesame and safflower. Leonard Hill, LondonGoogle Scholar
  176. Were BA, Gudu S, Onkware AO, Carlsson AS, Welander M (2006) In vitro regeneration of sesame (Sesamum indicum L.) from seedling cotyledon and hypocotyl explants. Plant Cell Tiss Org Cult 85:235–239CrossRefGoogle Scholar
  177. Xu ZQ, Jia JF, Hu ZD (1997) Somatic embryogenesis in Sesamum indicum L. cv. nigrum. J Plant Physiol 150:755–758CrossRefGoogle Scholar
  178. Yadav M, Chaudhary D, Sainger M, Jaiwal PK (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tiss Org Cult 61:543–551Google Scholar
  179. Yang MZ, Jia SR, Pua EC (1991) High frequency plant regeneration from hypocotyl explants of Brassica carinata A. Br. Plant Cell Tiss Org Cult 24:79–82CrossRefGoogle Scholar
  180. Yermanos DM, Hemstreet S, Saleeb W, Huszar CK (1972) Oil content and composition of the seed in the world collection of sesame introductions. J Am Oil Chem Soc 49:20–23CrossRefGoogle Scholar
  181. Younghee K (2001) Effects of BA, NAA, 2, 4-D and AgNO3 treatments on callus induction and shoot regeneration from hypocotyl and cotyledon of sesame (Sesamum indicum L.). J Kor Soc Hortic Sci 42:70–74Google Scholar
  182. Yu K, Li R, Hatanaka T, Hildebrand D (2008) Cloning and functional analysis of two type 1 diacylglycerol acyltransferases from Vernonia galamensis. Phytochemistry 69:1119–1127PubMedCrossRefGoogle Scholar
  183. Yukawa Y, Takaiwa F, Shoji K, Masuda K, Yamada K (1996) Structure and expression of two seed-specific cDNA clones encoding stearoyl-acyl carrier protein desaturase from sesame, Sesamum indicum L. Plant Cell Physiol 37:201–205PubMedCrossRefGoogle Scholar
  184. Zhang YX, Sun J, Zhang XR, Wang LH, Che Z (2011) Analysis on genetic diversity and genetic basis of the main sesame cultivars released in China. Agric Sci China 10:509–518CrossRefGoogle Scholar
  185. Zheng ZF, Uchacz TM, Taylor JL (2001) Isolation and characterization of novel defence-related genes induced by copper, salicylic acid, methyl jasmonate, abscisic acid and pathogen infection in Brassica carinata. Mol Plant Pathol 2:159–169PubMedCrossRefGoogle Scholar
  186. Zulfiqar A, Paulose B, Chhikara S, Dhankher OP (2011) Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica. Environ Pollut 159:3123–3128PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Biotechnology CentreJawaharlal Nehru Agricultural UniversityJabalpurIndia

Personalised recommendations