Advertisement

Application of TILLING for Orphan Crop Improvement

  • Korinna Esfeld
  • Cristobal Uauy
  • Zerihun Tadele
Chapter

Abstract

People in developing countries mostly depend for their diet on special staple crops, so called orphan crops. These crops play a key role in food security since they are grown by many resource-poor farmers and consumed locally. Despite their huge importance in the economy and livelihood of the developing world, orphan crops have received little attention in terms of scientific improvement. Although conventional breeding is widely implemented to improve crop plants, alternative methods such as marker-assisted breeding and reverse genetics approaches have proved to be efficient in developing crop cultivars. In this review, we present detailed description of a non-transgenic and reverse genetics technique called TILLING (Targeting Induced Local Lesion IN Genomes). The method was originally optimized in the model plant Arabidposis thaliana and subsequently applied to crops such as maize, wheat, and rice. We also present detailed procedures for several TILLING strategies and discuss their benefits and drawbacks. The application of the technique for orphan crop improvement is also discussed based on several TILLING platforms currently carried-out on these understudied crops of the world.

Keywords

Mung Bean Mutation Detection Finger Millet Mutation Breeding Bambara Groundnut 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AFLPs

Amplified fragment length polymorphisms

CAPS

Cleaved amplified polymorphic sequence

CJE

Celery juice extract

CODDLE

Codons optimized to detect deleterious lesions

dCAPS

Derived cleaved amplified polymorphic sequences

EMS

Ethyl methanesulphonate

HF

Hydrogen fluoride

IRD

Infra-red dye

MAB

Marker-assisted breeding

MAS

Marker-assisted selection

MNU

N-methyl-N-nitrosourea

ODAP

β-N-Oxalyl-L-α, β-diaminopropanoic acid

PARSESNP

Project aligned related sequences and evaluate SNPs

SIFT

Sorting intolerant from tolerant

SNPs

Single nucleotide polymorphism

SSR

Simple sequence repeats

TILLING

Targeting induced local lesion IN genomes

Notes

Acknowledgments

K. E. and Z. T. express their gratitude to Syngenta Foundation for Sustainable Agriculture and University of Bern for supporting the Tef Improvement Project. The TILLING research in the Uauy lab is funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC) (BB/I000712/1).

References

  1. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204CrossRefGoogle Scholar
  2. Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J. doi: 10.1111/j.1467-7652.2011.00628.x
  3. Al-Safadi B, Arabi MIE (2007) In vitro induction, isolation and selection of potato mutants tolerant to salinity. Adv Hort Sci 20:127–132Google Scholar
  4. Asiwe, JAN (2009) Field evaluation of bambara groundnut germplasm for important traits and resistance to root knot nematode infestation. In: Tadele Z (ed) New approaches to plant breeding of orphan crops in Africa: Proceedings of an International Conference, Bern, Switzerland. Stämpli AG, Bern, 19–21 Sept 2007Google Scholar
  5. Assefa K, Belay G, Tefera H, Yu J-K, Sorrells ME (2009) Breeding tef: conventional and molecular approaches. In: Tadele Z (ed) New approaches to plant breeding of orphan crops in Africa: Proceedings of an International Conference, Bern, Switzerland. Stämpli AG, Bern, 19–21 Sept 2007Google Scholar
  6. Ayalew M, Stewart N (2005) Overexpression of Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 23:1177–1180CrossRefGoogle Scholar
  7. Baenziger PS, Russell WK, Graef GL, Campbell BT (2006) Improving lives: 50 years of crop breeding, genetics and cytology. Crop Sci 46:2230–2244CrossRefGoogle Scholar
  8. Bal U, Abak K (2007) Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. Euphytica 158:1–9CrossRefGoogle Scholar
  9. Bapat VA, Yadav SR, Dixit GB (2008) Rescue of endangered plants through biotechnological applications. Natl Acad Sci Lett 31:201–210Google Scholar
  10. Barkley NA, Wang ML, Gillaspie AG, Dean RE, Pederson GA, Jenkins TM (2008) Discovering and verifying DNA polymorphisms in a mung bean [V. radiata (L.) R. Wilczek] collection by EcoTILLING and sequencing. BMC research notes: 1:28. doi: 10.1186/1756-0500-1-28
  11. Borlaug NE (2007) Sixty-two years of fighting hunger: personal recollections. Euphytica 157:287–297CrossRefGoogle Scholar
  12. Boukar O, Fatokun C (2009) Strategies in cowpea breeding. In: Tadele Z (ed) New approaches to plant breeding of orphan crops in Africa. In: Proceedings of an International Conference, Bern, Switzerland. Stämpli AG, Bern, 19–21 Sept 2007Google Scholar
  13. Brandt SA, Spring A, Hiebsch C, McCabe JT, Tabogie E, Diro M, Wolde-Michael G, Yntiso G, Shigeta M, Tesfaye S (1997) The tree against hunger: enset-based agricultural systems in Ethiopia. American Association for the advancement of scienceGoogle Scholar
  14. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40:143–150PubMedCrossRefGoogle Scholar
  15. Ceballos H, Iglesias CA, Pérez JC, Dixon AG (2004) Cassava breeding: opportunities and challenges. PlantMol Biol 56:503–516Google Scholar
  16. Ceballos H, Okogbenin E, Pérez JC, López-Valle LAB, Debouck D (2010) Cassava. In: Bradshaw JE (ed) Hand book of plant breeding: root and tuber crops. Springer, New YorkGoogle Scholar
  17. Chandrashekar A (2010) Finger millet: Eleusine coracana. Adv Food Nutr Res 59:215–262PubMedCrossRefGoogle Scholar
  18. Charcosset A, Moreau L (2004) Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 137:81–94CrossRefGoogle Scholar
  19. Chawade A, Sikora P, Bräutigam M, Larsson M, Vivekanand V, Nakash MA, Chen T, Olsson O (2010) Development and characterization of an oat TILLING-population and identification of mutations in lignin and beta-glucan biosynthesis genes. BMC Plant Biol 10:86PubMedCrossRefGoogle Scholar
  20. Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294PubMedCrossRefGoogle Scholar
  21. Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484PubMedCrossRefGoogle Scholar
  22. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572PubMedCrossRefGoogle Scholar
  23. Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694PubMedCrossRefGoogle Scholar
  24. Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786PubMedCrossRefGoogle Scholar
  25. Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9PubMedCrossRefGoogle Scholar
  26. CSA (Central Statistical Agency; 2011) Agricultural sample survey 2010/11. Statistical Bulletin 505, Addis Ababa, EthiopiaGoogle Scholar
  27. Devos KM (2005) Updating the “Crop Circle”. Curr Opin Plant Biol 8:155–162PubMedCrossRefGoogle Scholar
  28. Dong C, Dalton-Morgan J, Vincent K, Sharp P (2009a) A modified TILLING method for wheat breeding. Plant Genome 2:39–47CrossRefGoogle Scholar
  29. Dong C, Vincent K, Sharp P (2009b) Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor. BMC Plant Biol 9:143PubMedCrossRefGoogle Scholar
  30. Ejeta G (2010) African Green Revolution needn’t be a mirage. Science 327:831–832PubMedCrossRefGoogle Scholar
  31. Elias R, Till BJ, Mba C, Al-Safadi B (2009) Optimizing TILLING and EcoTILLING techniques for potato (Solanum tuberosum L.). BMC research notes 2:141. doi: 10.1186/1756-0500-2-141
  32. FAO (Food and Agricultural Organization; 2002) World agriculture: towards 2015/2030. FAO, RomeGoogle Scholar
  33. Germana MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857PubMedCrossRefGoogle Scholar
  34. Getahun H, Lambein F, Vanhoorne M, Stuyft PV (2003) Food-aid cereals to reduce neurolathyrism related to grasspea preparations during famine. Lancet 362:1808–1810PubMedCrossRefGoogle Scholar
  35. Ghosh A (2011) Modern methods for selection of plants with better characteristics. http://www.biotecharticles.com/Agriculture-Article/Modern-Methods-For-Selection-of-Plants-With-Better-Characterisitcs-860.html. Accessed 15 May 2012
  36. Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215PubMedCrossRefGoogle Scholar
  37. Giri CC, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees-Struct Funct 18:115–135CrossRefGoogle Scholar
  38. Godfray HCF, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–817PubMedCrossRefGoogle Scholar
  39. Golle DP, Reiniger LRS, Curti AR, Bevilacqua CB (2009) Forestry improvement: emphasis on biotechnology application. Cienc Rural 39:1606–1613Google Scholar
  40. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740PubMedGoogle Scholar
  41. Haughn GW, Gilchrist EJ (2006) TILLING in the Botanical Garden: a reverse genetic technique feasible for all plant species. Floriculture Ornamental Plant Biotechnol 1:476–482Google Scholar
  42. Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636PubMedCrossRefGoogle Scholar
  43. Himelblau E, Gilchrist EJ, Buono K, Bizzell C, Mentzer L, Vogelzang R, Osborn T, Amasino RM, Parkin IAP, Haughn GW (2009) Forward and reverse genetics of rapid-cycling Brassica oleracea. Thero Appl Genet 118:953–961CrossRefGoogle Scholar
  44. Hopman E, Dekking L, Blokland ML, Wuisman M, Zuijderduin W, Koning F, Schweizer J (2008) Tef in the diet of celiac patients in The Netherlands. Scand J Gatroentero 43:277–282CrossRefGoogle Scholar
  45. IFPRI (International Food Policy Research Institute (2002) Green Revolution: curse or blessing?. IFPRI, WashingtonGoogle Scholar
  46. IPGRI (International Plant Genetic Resources Institute, 2004) Promoting fonio production in West and Central Africa through germplasm management and improvement of post-harvest technology. Final report. (http://www.underutilized-species.org/%20Documents/PUBLICATIONS/fonio_rapport_final_GTZ_project1.pdf).Accessed Aug 2009)
  47. Ishikawa T, Kamei Y, Otozai S, Kim J, Sato A, Kuwahara Y, Tanaka M, Deguchi T, Inohara H, Tsujimura T, Todo T (2010) High-resolution melting curve analysis for rapid detection of mutations in a Medaka TILLING library. BMC Mol Biol 11:70PubMedCrossRefGoogle Scholar
  48. Jacobsen E, Schouten HJ (2007) Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotechnol 25:219–223PubMedCrossRefGoogle Scholar
  49. Jain SM (2007) Biotechnology and mutagenesis in genetic improvement of cassava (Manihot esculenta). Gene Conserve 6:329–343Google Scholar
  50. Jain SM (2009) Mutation induced genetic improvement of neglected crops. In: Tadele Z (ed) New approaches to plant breeding of orphan crops in Africa. In: Proceedings of an International Conference, Bern, Switzerland. Stämpli AG, Bern, 19–21 Sept 2007Google Scholar
  51. James C (2010) Global status of commercialized biotech/GM Crops: 2010. International Service for the Acquisition of Agri-biotech Applications (ISAAA) Briefs No. 42. Ithaca, NY. ISBN: 978-1-892456-49-4. http://www.isaaa.org/. Accessed Aug 2011
  52. Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110CrossRefGoogle Scholar
  53. Jung S, Jiwan D, Cho I, Lee T, Abbott A, Sosinski B, Main D (2009) Synteny of Prunus and other model plant species. BMC Genomics 10:76. doi: 10.1186/1471-2164-10-76 PubMedCrossRefGoogle Scholar
  54. Kim BY, Baier AC, Somers DJ, Gustafson JP (2001) Aluminum tolerance in triticale, wheat, and rye. Euphytica 120:329–337CrossRefGoogle Scholar
  55. Lababidi S, Mejlhede N, Rasmussen SK, Backes G, Al-Said W, Baum M, Jahoor A (2009) Identification of barley mutants in the cultivar ‘Lux’ at the Dhn loci through TILLING. Plant Breeding 128:332–336CrossRefGoogle Scholar
  56. Lakshmanan P, Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol 2:136–148CrossRefGoogle Scholar
  57. Maqbool SB, Devi P, Sticklen MB (2001) Biotechnology: Genetic improvement of sorghum (Sorghum bicolor (L.) Moench). In Vitro Cell Dev Biol Plant 37:504–515CrossRefGoogle Scholar
  58. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457PubMedCrossRefGoogle Scholar
  59. Minoia S, Petrozza A, D’Onofrio O, Piron F, Mosca G, Sozio G, Cellini F, Bendahmane A, Carriero F (2010) A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res Notes 3:69PubMedCrossRefGoogle Scholar
  60. Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739PubMedCrossRefGoogle Scholar
  61. Nassar NMA (2009) Wild species to improve orphan crops: the case of cassava. In: Tadele Z (ed) New approaches to plant breeding of orphan crops in Africa. In: Proceedings of an International Conference, Bern, Switzerland. Stämpli AG, Bern, 19–21 Sept 2007Google Scholar
  62. Naylor RL, Falcon WP, Goodman RM, Jahn MM, Sengooba T, Tefera H, Nelson RJ (2004) Biotechnology in the developing world: a case for increased investments in orphan crops. Food Policy 29:15–44CrossRefGoogle Scholar
  63. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814PubMedCrossRefGoogle Scholar
  64. Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gómez-Guillamón ML, Truniger V, Gómez P, Garcia-Mas J, Aranda MA, Bendahmane A (2007) EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol 7:34PubMedCrossRefGoogle Scholar
  65. NRC (National Research Council, 1996). Finger millet. In: Lost Crops of Africa. Volume I: Grains. National Academy of Press, Washington, DCGoogle Scholar
  66. NRC (National Research Council, 2006) Bambara bean. In: Lost crops of Africa. Volume II: Vegetables. National Academy of Press, Washington, DCGoogle Scholar
  67. Ochoa-Alejo N, Ramirez-Malagon R (2001) In vitro chili pepper biotechnology. In Vitro Cell Dev Biol Plant 37:701–729CrossRefGoogle Scholar
  68. Padulosi S, Mal B, Ravi SB, Gowda J, Gowda KTK, Shanthakumar G, Yenagi N, Dutta M (2009) Food security and climate change: role of plant genetic resources of minor millets. Indian J Plant Genet Resour 22:1–16Google Scholar
  69. Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 66:2817–2825CrossRefGoogle Scholar
  70. Porch TG, Blair MW, Lariguet P, Galeano C, Pankhurst CE, Broughton WJ (2009) Generation of a mutant population for TILLING common bean genotype BAT 93. J Amer Soc Horti Sci 134:348–355Google Scholar
  71. Raghavan C, Naredo MEB, Wang HH, Atienza G, Liu B, Qiu FL, McNally KL, Leung H (2007) Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping. Mol Breed 19:87–101CrossRefGoogle Scholar
  72. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551PubMedCrossRefGoogle Scholar
  73. Rigola D, van Oeveren J, Janssen A, Bonné A, Schneiders H, van der Poel HJ, van Orsouw NJ, Hogers RC, de Both MT, van Eijk MJ (2009) High-throughput detection of induced mutations and natural variation using KeyPoint technology. PLoS ONE 4:e4761PubMedCrossRefGoogle Scholar
  74. Sato Y, Shirasawa K, Takahashi Y, Nishimura M, Nishio T (2006) Mutant selection from progeny of gamma-ray-irradiated rice by DNA heteroduplex cleavage using Brassica Petiole extract. Breeding Sci 56:179–183CrossRefGoogle Scholar
  75. Schmidt R (2000) Synteny: recent advances and future prospects. Curr Opin Plant Biol 3:97–102PubMedCrossRefGoogle Scholar
  76. Sestili F, Botticella E, Bedo Z, Phillips A, Lafiandra D (2010) Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breeding 25:145–154CrossRefGoogle Scholar
  77. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441PubMedCrossRefGoogle Scholar
  78. Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115PubMedCrossRefGoogle Scholar
  79. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81PubMedCrossRefGoogle Scholar
  80. Spaenij-Dekking L, Kooy-Winkelaar Y, Koning F (2005) The Ethiopian cereal tef in celiac disease. N Engl J Med 353:1748–1749PubMedCrossRefGoogle Scholar
  81. Stadler F, Mohler V, Kilian A, Bonin A, Thümmler F, Mayes S, Ros B, Wenzel G (2009) Initial results from applying diversity arrays technology (DArT) and massively parallel signature sequencing (MPSS) to bambara groundnut. In: Tadele Z (ed) New approaches to plant breeding of orphan crops in Africa. In: Proceedings of an International Conference, Bern, Switzerland. Stämpli AG, Bern, 19–21 Sept 2007Google Scholar
  82. Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ, Østergaard L (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10:62PubMedCrossRefGoogle Scholar
  83. Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Genet Genomics 279:213–223PubMedCrossRefGoogle Scholar
  84. Tadele Z (ed) (2009) New approaches to plant breeding of orphan crops in Africa: Proceedings of an International Conference, Bern, Switzerland. Stämpli AG, Bern, 19–21 Sept 2007Google Scholar
  85. Tadele Z, Mba C, Till BJ (2009) TILLING for mutations in model plants and crops. In Mohan Jain S, Brar DS (eds) Molecular techniques in crop improvement. Springer, NetherlandsGoogle Scholar
  86. Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485PubMedCrossRefGoogle Scholar
  87. Taylor NE, Greene EA (2003) PARSESNP: A tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res 31:3808–3811PubMedCrossRefGoogle Scholar
  88. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822PubMedCrossRefGoogle Scholar
  89. Thorpe TA (2007) History of plant tissue culture. Mol Biotechnol 37:169–180PubMedCrossRefGoogle Scholar
  90. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 12:524–530CrossRefGoogle Scholar
  91. Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004a) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12PubMedCrossRefGoogle Scholar
  92. Till BJ, Burtner C, Comai L, Henikoff S (2004b) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641PubMedCrossRefGoogle Scholar
  93. Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1:2465–2477PubMedCrossRefGoogle Scholar
  94. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007a) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19Google Scholar
  95. Till BJ, Comai L, Henikoff S (2007b) TILLING and EcoTILLING for crop improvement. In Varshney RK, Tuberosa R (eds) Genomics-Assisted Crop Improvement, vol 1: genomics approaches and platforms. Springer, NetherlandsGoogle Scholar
  96. Till BJ, Jankowicz-Cieslak J, Sági L, Huynh OA, Utsushi H, Swennen R, Terauchi R, Mba C (2010) Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling. Theor Appl Genet 121:1381–1389PubMedCrossRefGoogle Scholar
  97. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–425Google Scholar
  98. Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A (2007) Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J 51:1116–1125PubMedCrossRefGoogle Scholar
  99. Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268PubMedCrossRefGoogle Scholar
  100. Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115PubMedCrossRefGoogle Scholar
  101. Vasil IK (2005) Tissue cultures of maize. Maydica 50:361–365Google Scholar
  102. Wahid MB, Abdullah SNA, Henson IE (2005) Oil palm—Achievements and potential. Plant Prod Sci 8:288–297CrossRefGoogle Scholar
  103. Wang D-K, Sun Z-X, Tao Y-Z (2006) Application of TILLING in plant improvement. Acta Genetica Sinica 33:957–964PubMedCrossRefGoogle Scholar
  104. Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180:751–765PubMedCrossRefGoogle Scholar
  105. Wang T, Uauy C, Till B, Liu C-M (2010) Tilling and associated technologies. J Integr Plant Biol 52:1027–1030PubMedCrossRefGoogle Scholar
  106. Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotech 17:123–129PubMedCrossRefGoogle Scholar
  107. Weil CF (2009) TILLING in grass species. Plant Physiol 149:158–164PubMedCrossRefGoogle Scholar
  108. Weil CF, Monde R-A (2007) Getting the point—mutations in maize. Crop Sci 47:S60–S67CrossRefGoogle Scholar
  109. Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103–116PubMedCrossRefGoogle Scholar
  110. Yan ZY, Spencer PS, Li ZX, Liang YM, Wang YF, Wang CY, Li FM (2006) Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry 67:107–121PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Korinna Esfeld
    • 1
  • Cristobal Uauy
    • 2
    • 3
  • Zerihun Tadele
    • 1
  1. 1.Tef Improvement Project, Institute of Plant SciencesUniversity of BernBernSwitzerland
  2. 2.John Innes Centre, Norwich Research ParkNorwichUK
  3. 3.National Institute of Agricultural BotanyCambridgeUK

Personalised recommendations