Plant Regeneration and Genetic Transformation in Jatropha

  • M. Sujatha
  • S. Nithianantham
  • M. P. Reddy


Jatropha curcas, a non-edible oil bearing species with multiple uses, and considerable economic potential is emerging as a potential biofuel plant. The limited knowledge of this species, low and inconsistent yields, the narrow genetic variability, and vulnerability to insects and diseases are major constraints in successful cultivation of Jatropha as a biofuel crop. Hence, genetic improvement of Jatropha is essential by conventional and modern biotechnological tools to use as a viable alternative source of bio-diesel. Realising its potential as a bio-energy crop, in vitro regeneration methods have been established to meet the demand of large scale supply of superior clones, and also as a prelude for genetic improvement of the species through transgenic approaches. In this chapter, an overview of in vitro tissue culture and genetic transformation of Jatropha is discussed.


Somatic Embryo Somatic Embryogenesis Benzyl Adenine Millettia Pinnata Methylation Sensitive Amplify Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



α-napthaleneacetic acid


Benzyl adenine


Murashige and Skoog




Indole-3-butyric acid




Amplified fragment length polymorphism


Inter simple sequence repeats


Methylation sensitive amplified polymorphism


  1. Abigor RD, Uadia PO, Foglia TA, Haas MJ, Scott K, Savary BJ (2002) Partial purification and properties of lipase from germinating seeds of Jatropha curcas L. J Amer Oil Chem Soc 79:1123–1126CrossRefGoogle Scholar
  2. Adebowale KO, Adedire CO (2006) Chemical composition and insecticidal properties of the underutilized Jatropha curcas seed oil. Afr J Biotechnol 10:901–906Google Scholar
  3. Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631PubMedCrossRefGoogle Scholar
  4. Ahuja MR (1987) Gene transfer in forest trees. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum Press, New York, pp 25–41Google Scholar
  5. Alain H, Ali K, Danielle L (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118:155–170CrossRefGoogle Scholar
  6. Altei WF, Picchi DG, Barbosa SC et al (2008) NMR studies, solid phase synthesis and MD/SA simulation as a tool for structural elucidation of new bioactive peptides from the latex of Jatropha curcas L. Planta Med 74:1–338 (SL65)Google Scholar
  7. Auvin C, Baraguey C, Blond A et al (1997) Curcacycline B, a cyclic nonapeptide from Jatropha curcas enhancing rotamase activity of cyclophilin. Tetrahedron Lett 38:2845–2848CrossRefGoogle Scholar
  8. Baraguey C, Blond A, Cavelier F et al (2001) Isolation, structure and synthesis of mahafacyclin B, a cyclic heptapeptide from the latex of Jatropha mahafalensis. J Chem Soc Perkin Trans 1:2098–2103CrossRefGoogle Scholar
  9. Becker K, Makkar HPS (1998) Toxic effects of phorbol esters in carp (Cyprinus carpio L). Vet Hum Toxicol 40:82–86Google Scholar
  10. Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721PubMedCrossRefGoogle Scholar
  11. Carels N (2009) Jatropha curcas: a review. Adv Bot Res 50:39–86CrossRefGoogle Scholar
  12. Carvalho CR, Clarindo WR, Praca MM et al (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617CrossRefGoogle Scholar
  13. Chitra P, Venkatachalam P, Sampathrajan A (2005) Optimization of experimental conditions for biodiesel production from alkali-catalysed transesterification of Jatropha curcas oil. Energy Sustain Dev 9:13–18CrossRefGoogle Scholar
  14. da Camara Machado A, Frick NS, Kremen R et al (1997) Biotechnological approaches to the improvement of Jatropha curcas. In: Proceedings of the International Symposium on Jatropha pp. 15 Managua, NicaraguaGoogle Scholar
  15. Datta MM, Mukherjee P, Ghosh B et al (2007) In vitro clonal propagation of biodiesel plant (Jatropha curcas L). Curr Sci 93:1438–1442Google Scholar
  16. Dehgan B (1984) Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae). Syst Bot 9:467–478CrossRefGoogle Scholar
  17. Deore AC, Johnson TS (2008) High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant. Plant Biotechnol Rep 2:7–11Google Scholar
  18. Fairless D (2007) Biofuel: the little shrub that could-maybe. Nature 449:652–655PubMedCrossRefGoogle Scholar
  19. Francis G, Edinger R, Becker K (2005) A concept for simultaneous waste land reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resourc Forum 29:12–24CrossRefGoogle Scholar
  20. Ghosh A, Chaudhary DR, Reddy MP et al (2007) Prospects for Jatropha methyl ester (biodiesel) in India. Int J Environ Stud 64:659–674CrossRefGoogle Scholar
  21. Ginwal US, Rawat PS, Srivastava RL (2004) Seed source variation in growth performance and oil yield of Jatropha curcas L in Central India. Silvae Genet 53:186–192Google Scholar
  22. Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263CrossRefGoogle Scholar
  23. Gubitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82CrossRefGoogle Scholar
  24. Gupta RC (1985) Pharmacognostic studies on ‘Dravanti’. Part I. Jatropha curcas Linn. Indian Acad Sci 1:65–81Google Scholar
  25. Hamilton C, Frary A, Lewis C et al (1997) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93:9975–9979CrossRefGoogle Scholar
  26. He Y, Pasapula V, Li X et al (2009a) Agrobacterium tumefaciens-mediated transformation of Jatropha curcas: factors affecting transient transformation efficiency and morphology analysis of transgenic calli. Silvae Genet 58:123–128Google Scholar
  27. He Y, Guo X, Lu R et al (2009b) Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell Tiss Org Cult 98:11–17CrossRefGoogle Scholar
  28. Heller J (1996) Physic nut Jatropha curcas L In: Promoting the Conservation and use of Underutilized and Neglected Crops. 1. Institute of Plant Genetics and Crop Plant Research. Gatersleben/International Plant Genetic Resources Institute, RomeGoogle Scholar
  29. Hernandez JBP, Remy S, Sauco VG et al (1999) Chemotactic movement and attachment of Agrobacterium tumefaciens to banana cells and tissues. J Plant Physiol 155:245–250CrossRefGoogle Scholar
  30. Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss Org Cult 33:105–119CrossRefGoogle Scholar
  31. Ingelbrecht I, Breyne P, Vancomperonolle A et al (1991) Transcriptional interferences in transgenic plants. Gene 109:239–242PubMedCrossRefGoogle Scholar
  32. Jha TB, Mukherjee P, Datta MM (2007) Somatic embryogenesis in Jatropha curcas Linn., an important biofuel plant. Plant Biotechnol Rep 1:135–140CrossRefGoogle Scholar
  33. Jin-xia Z, Qin W, Li-jun Z et al (2005) The extraction of β-1,3-glucanase and analysis of partial characteristics in Jatropha curcas. Southwest China J Agric Sci 18:328–333Google Scholar
  34. Johri BM, Bhojwani SS (1965) Growth response of mature endosperm in cultures. Nature 298:1345–1347CrossRefGoogle Scholar
  35. Jones N, Miller JH (1991) Jatropha curcas a multipurpose species for problematic sites. Land Resour Ser 1:1–12Google Scholar
  36. Jongschaap REE, Corré WJ, Bindraban OS et al (2007) Claims and facts on Jatropha curcas L.: Wageningen, The Netherlands: Plant Research International. http;// Session = isgsklbna58j7grrfst888n5r7Google Scholar
  37. Josephina GN, van Staden J (1990) The relationship between genotype, tissue age and endogenous cytokinin levels on adventitious bud formation on leaves of Lachenalia. Plant Cell Tiss Org Cult 22:223–228CrossRefGoogle Scholar
  38. Joshi M, Mishra A, Jha B (2011) Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Ind Crops Prod 33:67–77CrossRefGoogle Scholar
  39. Kaewpoo M, Te-chato S (2010) Study on ploidy level of micropropagated Jatropha curcas L. via flow cytometry. J Agri Tech 6:391–400Google Scholar
  40. Kalimuthu K, Paulsamy S, Senthil Kumar R et al (2007) In vitro propagation of bio-diesel plant of Jatropha curcas L. Plant Tiss Cult Biotech 17:137–147Google Scholar
  41. Karp A (1994) Origins, causes and uses of variation in plant tissue cultures. In: Vasil IK, Thorpe TA (eds) Plant Cell and Tissue Culture. Kluwer Acad Publ Dordrecht, The Netherlands, pp 139–151Google Scholar
  42. Khemkladngoen N, Caragena J, Shibagaki N et al (2011) Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. J Biosci Bioeng 111:67–70PubMedCrossRefGoogle Scholar
  43. Khurana-Kaul V, Kachhwaha S, Kothari SL (2010) Direct shoot regeneration from leaf explants of Jatropha curcas in response to thidiazuron and high copper contents in the medium. Biol Plant 54:369–372CrossRefGoogle Scholar
  44. Kochhar S, Kochhar VK, Singh SP et al (2005) Differential rooting and sprouting behaviour of two Jatropha species and associated physiological and biochemical changes. Curr Sci 89:936–939Google Scholar
  45. Konez C, Martini N, Mayerhofer R et al (1989) High frequency T-DNA mediated tagging in plants. Proc Nat Acad Sci USA 86:8467–8471CrossRefGoogle Scholar
  46. Kothari SL, Varshney A (1998) Morphogenesis in long term maintained immature embryo derived callus of wheat (Triticum aestivum L.): histological evidence for both somatic embryogenesis and organogenesis. Plant Biochem Biotech 7:93–98CrossRefGoogle Scholar
  47. Krishna G, Sairam Reddy P, Bhattacharya PS et al (2010) Shoot organogenesis and plantlet regeneration from in vitro raised leaf segments of Jatropha curcas L. Trends Biosci 3:45–48Google Scholar
  48. Kumar N (2008) Studies on regeneration and genetic transformation in J. curcas. PhD thesis, Bhavngar University, Bhavngar, IndiaGoogle Scholar
  49. Kumar N, Reddy MP (2010) Plant regeneration through the direct induction of shoot buds from petiole explants of Jatropha curcas: a biofuel plant. Ann Appl Biol 156:367–375CrossRefGoogle Scholar
  50. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses: a review. Ind Crops Prod 28:1–10CrossRefGoogle Scholar
  51. Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854PubMedCrossRefGoogle Scholar
  52. Kumar N, Vijayanand KG, Reddy MP (2010a) Shoot regeneration from cotyledonary leaf explants of Jatropha curcas: a biodesel plant. Acta Physiol Plant 32:917–924CrossRefGoogle Scholar
  53. Kumar N, Vijayanand KG, Reddy MP (2010b) In vitro plant regeneration of non-toxic Jatropha curcas L: direct shoot organogenesis from cotyledonary petiole explants. J Crop Sci Biotech 13:189–194CrossRefGoogle Scholar
  54. Kumar N, Vijayanand KG, Pamidimarri DVNS et al (2010c) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crops Prod 32:41–47CrossRefGoogle Scholar
  55. Kumar N, Vijayanand KG, Reddy MP (2011) In vitro regeneration from petiole explants of non-toxic Jatropha curcas. Ind Crops Prod 33:146–151CrossRefGoogle Scholar
  56. Leela T, Naresh B, Srikanth Reddy M et al (2011) Morphological, physico-chemical and micropropagation studies in Jatropha curcas L. and RAPD analysis of the regenerants. Appl Energy 88:2071–2079CrossRefGoogle Scholar
  57. Li MR, Li HQ, Wu GJ (2006) Study on factors influencing Agrobacterium-mediated transformation of Jatropha curcas. J Mol Cell Biol 39:83–87Google Scholar
  58. Li M, Li H, Jiang H et al (2008) Establishment of an Agrobacterium-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tiss Organ Cult 92:173–181CrossRefGoogle Scholar
  59. Li C, Yu M, Chen F et al (2010) In vitro maturation and germination of Jatropha curcas microspores. Intl J Agric Biol 12:541–546Google Scholar
  60. Lin J, Tang L, Chen F (2002a) Tissue culture and plantlet regeneration of Jatropha curcas. Plant Physiol Commun 38:252Google Scholar
  61. Lin J, Yan F, Tang L et al (2002b) Isolation, purification and functional investigation on the N-glycosidase activity of curcin from the seeds of Jatropha curcas. High Technol Lett 11:36–40Google Scholar
  62. Liu HF, Kirchoff BK, Wu GJ et al (2007) Microsporogenesis and male gametogenesis in Jatropha curcas L. (Euphorbiaceae). J Torrey Bot cL 134:335–343CrossRefGoogle Scholar
  63. Lu WD, Wei Q, Tang L et al (2003) Induction of callus from Jatropha curcas and rapid propagation. Chin J Appl Environ Biol 9:127–130Google Scholar
  64. Makkar HPS, Becker K, Schmook B (1998) Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Foods Human Nutr 52:1–36CrossRefGoogle Scholar
  65. Martins M, Sarmento D, Oliveira MM (2004) Genetic stability of micropropagated almond plantlets as assessed by RAPD and ISSR markers. Plant Cell Rep 23:492–496PubMedCrossRefGoogle Scholar
  66. Mazumdar P, Basu A, Paul A et al (2010) Age and orientation of the cotyledonary leaf explants determine the efficiency of de novo plant regeneration and Agrobacterium tumefaciens mediated transformation in Jatropha curcas L. South Afr J Bot 76:337–344CrossRefGoogle Scholar
  67. Minocha SC (1987) Plant growth regulators and morphogenesis in cell and tissue cultures of forest trees. In: Bonga JM, Durzan DJ (eds) Cell and Tissue Culture in Forestry, Vol I, pp 50–66. Martinus Nijhoff Publisher, DordrechtGoogle Scholar
  68. Misra P, Gupta N, Toppo DD et al (2010a) Establishment of long-term proliferating shoot cultures of elite Jatropha curcas L. by controlling endophytic bacterial contamination. Plant Cell Tiss Org Cult 100:189–197CrossRefGoogle Scholar
  69. Misra P, Toppo DD, Gupta N et al (2010b) Effect of antioxidants and associate changes in antioxidant enzymes in controlling browning and necrosis of proliferating shoots of elite Jatropha curcas L. Biomass Bioenergy 34:1861–1869CrossRefGoogle Scholar
  70. Misra P, Toppo DD, Mishra MK et al (2011) Agrobacterium tumefaciens-mediated transformation protocol of Jatropha curcas L. using leaf and hypocotyl segments. Plant Biochem Biotechnol. doi: 101007/s13562-011-0072-3 Google Scholar
  71. Naruemon K, Cartagena JA, Kiichi F (2011) Physical wounding assisted Agrobacterium mediated transformation of juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. Plant Biotechnol Rep 5:235–243CrossRefGoogle Scholar
  72. Nath LK, Dutta SK (1992) Wound healing response of the proteolytic enzyme curcain. Indian J Pharmacol 24:114–115Google Scholar
  73. Openshaw K (2000) A review of Jatropha curcas: an oil plant unfulfilled promise. Biomass Bioenergy 19:1–15CrossRefGoogle Scholar
  74. Ostry ME, Hackett W, Michler C et al (1994) Influence of regeneration method and tissue source on the frequency of somatic variation in Populus to infection by Septoria musiva. Plant Sci 97:5222–5226CrossRefGoogle Scholar
  75. Palombi MA, Damiano C (2002) Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Rep 20:1061–1066CrossRefGoogle Scholar
  76. Pan J, Fu Q, Xu ZF (2010) Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. Afr J Biotech 9:6477–6481Google Scholar
  77. Prabakaran AJ, Sujatha M (1999) Jatropha tanjorensis Ellis and Saroja, a natural interspecific hybrid occurring in Tamil Nadu, India. Genet Resour Crop Evol 46:213–218CrossRefGoogle Scholar
  78. Preece JE, Imel MR (1991) Plant regeneration from leaf explants of Rhododendron ‘P.J.M. Hybrids’. Sci Hortic 48:159–170CrossRefGoogle Scholar
  79. Purkayastha J, Sugla T, Paul A et al (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 54:13–20CrossRefGoogle Scholar
  80. Rajore S, Batra A (2005) Efficient plant regeneration via shoot tip explant in Jatropha curcas. J Plant Biochem Biotechnol 14:73–75CrossRefGoogle Scholar
  81. Rajore S, Batra A (2007) An alternative source for regenerable organogenic callus induction in Jatropha curcas. Indian J Biotech 6:545–548Google Scholar
  82. Rajore S, Sardana J, Batra A (2002) In vitro cloning of Jatropha curcas L. J Plant Biol 29:195–198Google Scholar
  83. Rani V, Raina SN (2000) Genetic fidelity of organized meristem derived micropropagated plants: a critical reappraisal. In Vitro Cell Dev Biol Plant 36:319–330CrossRefGoogle Scholar
  84. Reddy MP and Pamidimarri DVNS (2010) Biology and biotechnological advances in Jatropha curcas—a biodiesel plant. Ramawat KG (ed) Desert Plants. Springer, Berlin HeidelbergGoogle Scholar
  85. Reddy MP, Kumar N, Vijay Anand KG et al (2008) Method for micropropagation of Jatropha curcas plants from leaf explants. Patent filed US and PCT, Application No. 2537de2008Google Scholar
  86. Rupert EA, Dehgan B, Webster GL (1970) Experimental studies of relationships in the genus Jatropha L. J. curcas × J. integerrima. Bull Torrey Bot Cl 97:321–325CrossRefGoogle Scholar
  87. Saker MM, Adawy SS, Mohamed AA et al (2006) Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol Plant 50:198–204CrossRefGoogle Scholar
  88. Sardana J, Batra A, Sharma R (1998) In vitro plantlet formation and micropropagation of Jatropha curcas L. Adv Plant Sci 11:167–169Google Scholar
  89. Sardana J, Batra A, Ali DJ (2000) An expeditious method for regeneration of somatic embryos in Jatropha curcas L. Phytomorphology 50:239–242Google Scholar
  90. Sato S, Hirakawa H, Isobe S et al (2011) Sequence analysis of the genome of an oil bearing tree, Jatropha curcas L. DNA Res 18:65–76PubMedCrossRefGoogle Scholar
  91. Sharma A, Kansal N, Shekhawat GS (2006) In vitro culture and plant regeneration of economically potent plant species Jatropha curcas. Biochem Cell Arch 6:323–327Google Scholar
  92. Sharma S, Kumar N, Reddy MP (2011a) Regeneration in Jatropha curcas: Factors affecting the efficiency of in vitro regeneration. Ind Crops Prod 34:943–951CrossRefGoogle Scholar
  93. Sharma S, Sudheer PDVN, Vijay Anand KG et al (2011b) Assessment of genetic stability in micropropagules of Jatropha curcas genotypes by RAPD and AFLP analysis. Ind Crops Prod 34:1003–1009CrossRefGoogle Scholar
  94. Shen X, Chen J, Kane ME et al (2007) Assessment of somaclonal variation in Dieffenbachia plants regenerated through indirect shoot organogenesis. Plant Cell Tiss Org Cult 91:21–27CrossRefGoogle Scholar
  95. Shrivastava S, Banerjee M (2008) In vitro clonal propagation of physic nut (Jatropha curcas L): Influence of additives. Intl J Integrative Biol 3:73–79Google Scholar
  96. Singh A, Reddy MP, Chikara J et al (2010) A simple regeneration protocol from stem explants of Jatropha curcas—a biodiesel plant. Ind Crops Prod 31:209–213CrossRefGoogle Scholar
  97. Smykal P, Valledor L, Rodriguez R et al (2007) Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep 26:1985–1998PubMedCrossRefGoogle Scholar
  98. Soomro R, Memon RA (2007) Establishment of callus and suspension culture in Jatropha curcas. Pak J Bot 39:2431–2441Google Scholar
  99. Srivastava PS (1971) In vitro induction of triploid roots and shoots from mature endosperm of Jatropha panduraefolia. Z Pflanzenphysiol 66:93–96Google Scholar
  100. Srivastava PS, Johri BM (1974) Morphogensis in mature endosperm cultures of Jatropha panduraefolia. Beitr Biol Pflanz 50:255–268Google Scholar
  101. Staubmann R, Ncube I, Gubitz GM et al (1999) Esterase and lipase activity in Jatropha curcas L. seeds. J Biotechnol 75:117–126PubMedCrossRefGoogle Scholar
  102. Stripe F, Pession-Brizzi A, Lorenzoni E et al (1976) Studies on the proteins from the seeds of Croton tiglium and of Jatropha curcas. Biochem J 156:1–6Google Scholar
  103. Sujatha M (2006) Genetic improvement of Jatropha curcas (L.) possibilities and prospects. Indian J Agrofor 8:58–65Google Scholar
  104. Sujatha M, Dhingra M (1993) Rapid plant regeneration from various explants of Jatropha integerrima. Plant Cell Tiss Org Cult 35:293–296CrossRefGoogle Scholar
  105. Sujatha M, Mukta N (1996) Morphogenesis and plant regeneration from tissue cultures of Jatropha curcas. Plant Cell Tiss Org Cult 44:135–141CrossRefGoogle Scholar
  106. Sujatha M, Prabakaran AJ (2003) New ornamental Jatropha hybrids through interspecific hybridization. Genet Resour Crop Evol 50:75–82CrossRefGoogle Scholar
  107. Sujatha M, Reddy TP (2000) Morphogenic responses of Jatropha integerrima explants to cytokinins. Biologia (Bratisl) 55:99–104Google Scholar
  108. Sujatha M, Makkar HPS, Becker K (2005) Shoot bud proliferation from axillary nodes and leaf sections of non-toxic Jatropha curcas L. Plant Growth Regul 47:83–90CrossRefGoogle Scholar
  109. Thepsamran N, Thepsithar C, Thongpukdee A (2008) In vitro induction of shoots and roots from Jatropha curcas L. explants. J Hortic Sci Biotechnol 83:106–112Google Scholar
  110. Thomas P (2004) In vitro decline in plant cultures: detection of a legion of covert bacteria as the cause for degeneration of long-term micropropagated triploid watermelon cultures. Plant Cell Tiss Org Cult 77:173–179CrossRefGoogle Scholar
  111. Van den Berg AJJ, Horsten SFAJ, van den Bosch Kettenes JJ et al (1995) Curcacycline A—a novel cyclic octapeptide isolated from the latex of Jatropha curcas L. FEBS Lett 358:215–218PubMedCrossRefGoogle Scholar
  112. Varshney A, Johnson TS (2010) Efficient plant regeneration from immature embryo cultures of Jatropha curcas, a biodiesel plant. Plant Biotech Rep 4:139–148CrossRefGoogle Scholar
  113. Varshney A, Sangapillai R, Patil M et al (2011) Histological evidence of morphogenesis from various explants of Jatropha curcas L. Trees. doi: 10.1007/s00468-011-0546-x Google Scholar
  114. Wang PJ, Charles A (1991) Micropropagation through meristem culture. In: Bajaj YPS (ed), High tech and micropropagation biotechnology in agriculture and forestry vol. 17, pp 32–52. Springer, Berlin HeidelbergGoogle Scholar
  115. Warakagoda PS, Subasinghe S (2009) In vitro culture establishment and shoot proliferation of Jatropha curcas L. Trop Agric Res Ext 12:77–80Google Scholar
  116. Wei T, Newton RJ (2004) Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill). Plant Sci 167:621–628CrossRefGoogle Scholar
  117. Wei Q, Lu WD, Liao Y et al (2004) Plant regeneration from epicotyl explants of Jatropha curcas. J Plant Physiol Mol Biol 30:475–478Google Scholar
  118. Wei Q, Liao Y, Chen Y et al (2005) Isolation, characterisation and antifungal activity of β-1,3-glucanase from seeds of Jatropha curcas. South Afr J Bot 71:95–99Google Scholar
  119. Weida L, Qim W, Lin T et al (2003) Induction of callus from Jatropha curcas and its rapid propagation. Yingyong Yuhuan Jingshengwu Xuebao 9:127–130Google Scholar
  120. Weike C, Qi Z, Xingchun C et al (2006) Chemical modification of Jatropha curcas RIPs (curcin) and effect of the modification on relative activity of curcin. Chin J Appl Environ Biol 12:329–333Google Scholar
  121. Wu JH, Miller SA, Hall HK et al (2009) Factors affecting the efficiency of micropropagation from lateral buds and shoot tips of Rubus. Plant Cell Tiss Org Cult 99:17–25CrossRefGoogle Scholar
  122. Xu R, Wanga R, Liu A (2011) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass Bioenerg. doi: 10.1016/j.biombioe.2011.01.001
  123. Yeung EC (1999) The use of histology in the study of plant tissue culture systems. Some practical comments. In Vitro Cell Dev Biol-Plant 35:137–143CrossRefGoogle Scholar
  124. Zhang Y, Wang Y, Jiang L (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin 39:787–794PubMedCrossRefGoogle Scholar
  125. Zhang FL, Niu B, Wang YC et al (2008) A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaptation to environmental stress. Plant Sci 174:510–518CrossRefGoogle Scholar
  126. Zhao Y, Zhou Y, Brian WWG (2005) Variation in leaf structures of micropropagated rhubarb (Rheum rhaponticum L.) PC49. Plant Cell Tiss Org Cult 85:115–121CrossRefGoogle Scholar
  127. Zong H, Wang S, Ouyang C et al (2010) Agrobacterium-mediated transformation of Jatropha curcas young leaf explants with lateral shoot-inducing factor (LIF). Intl J Agric Biol 12:891–896Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Directorate of Oilseeds ResearchHyderabadIndia
  2. 2.Department of Environmental SciencesBharathiar UniversityCoimbatoreIndia
  3. 3.Plant Stress Genomics Research CentreKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations