Photobioreactors for Microalgal Biofuel Production

  • Graziella Chini Zittelli
  • Liliana Rodolfi
  • Niccoló Bassi
  • Natascia Biondi
  • Mario R. Tredici
Part of the Developments in Applied Phycology book series (DAPH, volume 5)


Many different PBR designs have been proposed for biofuel production, few of them have been tested at pilot-scale, none developed at the (large) scale necessary for a complete and correct evaluation. Thus the main issues that impact on the reactor’s performance (i.e., suitable construction materials, efficient mixing, heating/cooling, CO2 supply and oxygen removal), although explored at pilot level, still await evaluation at real scale. Although the main limitations of PBR are the high cost and the reduced scalability, with few exceptions, R&D on photobioreactor design is aimed at achieving high photosynthetic efficiencies and at pushing productivity beyond that currently attainable. The main strategies explored to this end are intensive mixing, light dilution via large external surfaces or internal light conducting structures. This chapter reviews and examined recent advances and innovations in photobioreactor design and operation.


Oxygen Removal Open Pond Raceway Pond Automate Process Control System Nannochloropsis Oculata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acién Fernández FG (2008) Valorization of CO2 from flue gases using microalgae. Retrieved from On 18 Jan 2011
  2. Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305CrossRefGoogle Scholar
  3. Ahrens T (2010) BioProcess Algae: the future of algae. In: Fourth annual algae biomass summit, September 28–30, 2010, Phoenix, AZGoogle Scholar
  4. Ahrens T, Fowler B, Gay M, Heifetz PB, Lewnard JJ, Lockwood K, Prapas J, Pulz O, Walker M, Wilson C (2009) Photobioreactor systems and methods incorporating cultivation matrices. PCT Patent Application WO2009/129396 (22 October 2009)Google Scholar
  5. Bassi N (2010) Energetic and economic assesment of a disposable panel reactor for Nannochloropsis sp. biomass production. PhD thesis, University of Florence, Florence, ItalyGoogle Scholar
  6. Bassi N, Rodolfi L, Chini Zittelli G, Sampietro G, Del Bimbo L, Tredici MR (2010) The “Green Wall Panel”: potential and limitations of a low-cost disposable photobioreactor. In: Fourth annual algae biomass summit, September 28–30, 2010, Phoenix, AZGoogle Scholar
  7. Bayless DJ, Vis-Chiasson M, Kremer GG (2002) Photosynthetic carbon dioxide mitigation. PCT Patent Application WO2002/05932 (24 January 2002)Google Scholar
  8. Bayless DJ, Kremer G, Vis-Chiasson M, Stuart B, Shi L, Ono E, Cuello J (2006) Photosynthetic CO2 mitigation using a novel membrane-based photobioreactor. J Environ Eng Manag 16:209–215Google Scholar
  9. Berzin I (2005) Photobioreactor and process for biomass production and mitigation of pollutants in flue gases. US Patent Application 2005/0260553 (24 November 2005)Google Scholar
  10. Bondioli P, Della Bella L, Rivolta G, Casini D, Prussi M, Chiramonti D, Chini Zittelli G, Bassi N, Rodolfi L, Tredici MR (2010) Oil production by the marine microalga Nannochloropsis sp. F&M-M24. In: Proceedings of the 18th European biomass conference, May 3–7, 2010, Lyon, France, pp 538–541Google Scholar
  11. Borowitzka MA, Moheimani NR (2010) Sustainable biofuels from algae. Mitig Adaptation Strateg Global Change. doi: 10.1007/s11027-010-9271-9
  12. Boussiba S, Zarka A (2005) Flat panel photobioreactor. PCT Patent Application WO2005/006838 (27 January 2005)Google Scholar
  13. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577CrossRefGoogle Scholar
  14. Buehner MR, Young PM, Willson B, Rausen D, Schoonover R, Babbit G, Bunch S (2009) Microalgae growth modeling and control for a vertical flat panel photobioreactor. In: Proceedings of the American control conference, St. Louis, MO, June 10–12, 2009, pp 2301–2306Google Scholar
  15. Carlozzi P (2003) Dilution of solar radiation through culture lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81:305–315CrossRefGoogle Scholar
  16. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506Google Scholar
  17. Chaumont D, Gudin C, Thepenier C (1988) Scaling up of a tubular photobioreactor for continuous culture of Porphyridium cruentum – from laboratory to pilot plant. In: Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, pp 199–208Google Scholar
  18. Chisti Y, Moo-Young M (1989) On the calculation of shear rate and apparent viscosity in airlift and bubble column bioreactors. Biotechnol Bioeng 34:1391–1392CrossRefGoogle Scholar
  19. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819CrossRefGoogle Scholar
  20. Cuello JL, Ley JW (2010) The Accordion photobioreactor for production of algae biofuels and bioproducts. In: Fourth annual algae biomass summit, September 28–30, 2010, Phoenix, ArizonaGoogle Scholar
  21. Darzins A, Pienkos P, Edye L (2010) Current status and potential for algal biofuels production. BioIndustry Partners & NREL, Bioenergy Task 39, 6 August 2010, pp 131Google Scholar
  22. Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94CrossRefGoogle Scholar
  23. Fernández-Sevilla JM, Acién Fernández FG, Perez-Parra J, Magán Cañadas JJ, Granado-Lorencio F, Olmedilla B (2008) Large-scale production of high-content lutein extracts from S. almeriensis. Book of abstracts of the 11th International Conference on Applied Phycology, June 22–27, 2008, Galway, Ireland, pp 49–50Google Scholar
  24. Fernández-Sevilla JM, Acién Fernández FG, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40CrossRefGoogle Scholar
  25. Feuermann D, Gordon JM, Huleihil M (2002) Solar fiber-optic mini-dish concentrators: first experimental results and field experience. Sol Energy 72:459–472CrossRefGoogle Scholar
  26. Giudici P, Tredici MR (2010) Fotobioreattore tubolare per la produzione di microalghe. Italian Patent FI 2010A000216 (25 October 2010)Google Scholar
  27. Gordon JM (2002) Tailoring optical systems to optimized photobioreactors. Int J Hydrogen Energy 27:1175–1184CrossRefGoogle Scholar
  28. Haley JW (2010) Systems, apparatuses and methods for cultivating microorganisms and mitigation of gases. PCT Patent Application WO2010/048525 (29 April 2010)Google Scholar
  29. Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes, and potential, with special focus on Dunaliella sp. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The Alga Dunaliella: Biodiversity, Physiology, Genomics, and Biotechnology. Science Publishers, New Hampshire, pp 445–474Google Scholar
  30. Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adaption Strateg Glob Change 12:573–608CrossRefGoogle Scholar
  31. Huntley ME, Redalje DG (2010) Continuous-batch hybrid process for production of oil, and other useful products from photosynthetic microbes. US Patent 2010/7770322 (10 August 2010)Google Scholar
  32. Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210CrossRefGoogle Scholar
  33. Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413CrossRefGoogle Scholar
  34. Kanellos M (2009) GreenFuel Technologies closing down. Retrieved from On 23 Jan 2011
  35. Kertz MG (2007) Method and apparatus for CO2 sequestration. PCT Patent Application WO2007147028 (21 December 2007)Google Scholar
  36. Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481CrossRefGoogle Scholar
  37. Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol Bioeng 38:995–1000CrossRefGoogle Scholar
  38. Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285CrossRefGoogle Scholar
  39. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232CrossRefGoogle Scholar
  40. Mears BM (2008) Design, construction and testing of pilot scale photobioreactor subsystems. PhD thesis, Russ College of Engineering and Technology of Ohio University, AthensGoogle Scholar
  41. Meiser A, Schmid-Staiger U, Trösch W (2004) Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutum in the flat panel airlift (FPA) reactor. J Appl Phycol 16:215–225CrossRefGoogle Scholar
  42. Metcalf & Eddy, Inc. (2003) Wastewater engineering: treatment and reuse. The McGraw-Hill Companies, Columbus, 1819 ppGoogle Scholar
  43. Michiels M (2009) Bioreactor. EP Patent 2039753 (25 March 2009)Google Scholar
  44. Mohr M, Emminger F (2009) Method and device for photochemical process. PCT Patent Application WO2009/094680 (6 August 2009)Google Scholar
  45. Molina Grima E (2006) Production of microalgae biomass (Scenedesmus almeriensis) in a farmer greenhouse. 2nd International Symposium Desertification and Migrations, 25–27 October 2006, Almeria, Spain. Retrieved from On 18 Feb 2011
  46. Molina Grima E (2009) Algae biomass in Spain: a case study. First European Algae Biomass Association conference & general assembly, 3–4 June 2009, Florence, ItalyGoogle Scholar
  47. Molina Grima E, Fernández J, Acién Fernández FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131CrossRefGoogle Scholar
  48. Mori K (1985) Photoautotrophic bioreactor using visible solar rays condensed by Fresnel lenses and transmitted through optical fibers. Biotechnol Bioeng Symp 15:331–345Google Scholar
  49. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRefGoogle Scholar
  50. Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol 70:289–297CrossRefGoogle Scholar
  51. Oswald WJ (1988) Large-scale algal culture system (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 357–394Google Scholar
  52. Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HH, Bazin MJ (1983) A tubular bioreactor for photosynthetic production from carbon dioxide: design and performances. J Chem Technol Biotechnol 33B:35–58Google Scholar
  53. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177CrossRefGoogle Scholar
  54. Pulz O (2007) Performance summary report. Evaluation of GreenFuel’s 3D matrix algae growth engineering scale unit. Performance summary report, IGV Institut für Getreideverarbeitung GmbH, GermanyGoogle Scholar
  55. Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 123–152Google Scholar
  56. Qiang H, Faiman D, Richmond A (1998) Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors. J Ferment Bioeng 85:230–236CrossRefGoogle Scholar
  57. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501CrossRefGoogle Scholar
  58. Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal cultures, biotechnology and applied phycology. Blackwell, Oxford, pp 125–177Google Scholar
  59. Ripplinger P (2009) Industrial production of microalgae biomass with flat-panel airlift Photobioreactors. Retrieved from On 17 Jan 2011
  60. Rodolfi L, Chini Zittelli G, Biondi N, Tredici MR (2006) High surface-to-volume ratio photobioreactors used at the University of Florence for the cultivation of microalgae. Abstracts of Aqua 2006 International Conference & Exhibition, Florence, Italy, 9–13 May 2006, p 795Google Scholar
  61. Rodolfi L, Chini Zittelli G, Bassi N, Del Bimbo L, Tredici MR (2008) The “Green Wall” panel. Book of abstracts of the 11th International Conference on Applied Phycology, 22–27 June 2008, Galway, Ireland, p 93Google Scholar
  62. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  63. Sánchez Mirón A, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270CrossRefGoogle Scholar
  64. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Resour 1:20–43CrossRefGoogle Scholar
  65. Sears JT (2007) Method, apparatus and system for biodiesel production from algae. PCT Patent Application WO2007/025145 (1 March 2007)Google Scholar
  66. Sears JT (2009) Oxyfuel engineering assessment. Retrieved from On 23 Jan 2011
  67. Shigematsu S, Eckelberry N (2009) Apparatus and method for ­optimizing photosynthetic growth in a photobioreactor. US Patent Application 2009/0291485 (26 November 2009)Google Scholar
  68. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416CrossRefGoogle Scholar
  69. Sierra E, Acíen Fernández FG, Fernández JM, García JL, Gonzáles C, Molina Grima E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147CrossRefGoogle Scholar
  70. Sims B (2011) HR BioPetroleum acquires Shell stake in Collana. Retrieved from On 18 Feb 2011
  71. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  72. Stammbach MR, De Nys P, Heimann K, Rogers A (2010) Method of culturing photosynthetic organisms. PCT Patent Application WO2010/132917 (25 November 2010)Google Scholar
  73. Sula V (2010) OriginOil. Retrieved from On 4 Feb 2011
  74. Torrey M (2008) Algae in the tank. TLT Tribiol Lubr Technol 64(2):26–32Google Scholar
  75. Torzillo G, Carlozzi P, Pushparaj B, Montaini E, Materassi R (1993) A two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol Bioeng 42:891–898CrossRefGoogle Scholar
  76. Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal cultures. Biotechnology and applied phycology. Blackwell, Oxford, pp 178–214Google Scholar
  77. Tredici MR (2009) Microalgae cultures: limitation and potential. In: First European Algal Biomass Association conference & general assembly, 3–4 June 2009, Florence, ItalyGoogle Scholar
  78. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Future Sci Biofuels 1:143–162CrossRefGoogle Scholar
  79. Tredici MR, Chini Zittelli G (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197CrossRefGoogle Scholar
  80. Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic micro-organisms. PCT Patent Application WO2004/074423 (2 September 2004)Google Scholar
  81. Tredici MR, Carlozzi P, Chini Zittelli G, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38:153–159CrossRefGoogle Scholar
  82. Tredici MR, Biondi N, Chini Zittelli G, Ponis E, Rodolfi L (2009) Advances in microalgal culture for aquaculture feed and other uses. In: Burnell G, Allan G (eds) New technologies in aquaculture: improving production efficiency, quality and environmental management. Woodhead Publishing Ltd/CRC Press LLC, Boca Raton, pp 610–676CrossRefGoogle Scholar
  83. Tredici MR, Chini Zittelli G, Rodolfi L (2010) Photobioreactors. In: Flickinger MC, Anderson S (eds) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 6. Wiley, Hoboken, pp 3821–3838Google Scholar
  84. Tredici MR, Rodolfi L, Sampietro G, Bassi N (2011) Low-cost photobioreactor for microalgae cultivation. PCT Patent Application WO2011/013104 (03 February 2011)Google Scholar
  85. Trösch W (2002) Bio-reactor for the cultivation of micro-organisms and methods for the production thereof. PCT Patent Application 2002/31102 (04 April 2002)Google Scholar
  86. Trösch W (2009) Energy efficiency and economics of the production of microalgae biomass with a flat panel-airlift photobioreactor. Retrieved from On 17 Jan 2011
  87. Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607CrossRefGoogle Scholar
  88. Van Aken M (2009) SBAE Industries NV. Retrieved from ­ On 13 Feb 2011
  89. Van de Ven M, Van de Ven JMF (2009) Photobioreactor with a cleaning system and method for cleaning such a reactor. PCT Patent Application WO2009/051478 (23 April 2009)Google Scholar
  90. Van den Dorpel P (2010) AlgaeLink®. Fourth annual algae biomass summit, 28–30 September 2010, Phoenix, AZGoogle Scholar
  91. Vanhoutte J, Vanhoutte K (2009) Modular continuous production of micro-organisms. US patent 2009/0162920 (25 June 2009)Google Scholar
  92. Vanhoutte K, Vanhoutte J (2010) Method for harvesting algae or plants and device used thereby. US Patent Application 2010/0281836 (11 November 2010)Google Scholar
  93. Vunjak-Novakovic G, Kim Y, Wu X, Berzin I, Merchuk JC (2005) Air-lift bioreactors for algal growth on flue gas: mathematical modeling and pilot-plant studies. Ind Eng Chem Res 44:6154–6163CrossRefGoogle Scholar
  94. Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718CrossRefGoogle Scholar
  95. Watanabe Y, Saiki H (1997) Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas. Energy Convers Manag 38:S499–S503CrossRefGoogle Scholar
  96. Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization and oxygen accumulation. Biotechnol Bioeng 31:336–344CrossRefGoogle Scholar
  97. Weyer KM, Bush DR, Darzins A, Willson B (2010) Theoretical maximum algal oil production. Bioenergy Res 3:204–213CrossRefGoogle Scholar
  98. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRefGoogle Scholar
  99. Williams PRD, Inman D, Aden A, Heath GA (2009) Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? Environ Sci Technol 43:4763–4775CrossRefGoogle Scholar
  100. Willson B (2009a) The Solix AGS system: a low-cost photobioreactor system for production of biofuels from microalgae. Climate change: global risks, challenges and decisions IOP publishing IOP conference series: Earth and environmental science 6 (2009): 192015. doi: 10.1088/1755-1307/6/9/192015
  101. Willson B (2009b) Large scale production of microalgae for biofuels. International symposium on algal fuel research, 27 July 2009, Tsukuba, Japan. Retrieved from∼eeeforum/3rd3EF/IS2.pdf. On 17 Jan 2011
  102. Willson B, Babbitt G, Turner CW, Letvin P, Weyer-Geigel K, Ettinger A, Boczon A, Rancis N, Murphy J (2008) Improved diffuse light extended surface area water-supported photobioreactor. PCT Patent Application WO2008/079724 (3 July 2008)Google Scholar
  103. Willson B, Turner CW, Babbitt GR, Letvin PA, Wickrmasinghe SR (2009) Permeable membranes in film photobioreactors. US Patent 2009/0305389 (10 December 2009)Google Scholar
  104. Willson B, Buehner MR, Young PM, Rausen DJ, Babbitt GR, Schoonover R, Weyer-Geigel K, Sherman DE (2010) Model based controls for use with bioreactors. PCT Patent Application WO2010/002745 (7 January 2010)Google Scholar
  105. Zhang CW, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195:35–49CrossRefGoogle Scholar
  106. Zijffers JWF (2009) The Green Solar Collector: optimization of microalgal areal productivity. PhD thesis, Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  107. Zijffers JWF, Janssen M, Tramper J, Wijffels RH (2008a) Design process of an area-efficient photobioreactor. Mar Biotechnol 10:404–415CrossRefGoogle Scholar
  108. Zijffers JWF, Salim S, Janssen M, Tramper J, Wijffels RH (2008b) Capturing sunlight into a photobioreactor: ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145:316–327CrossRefGoogle Scholar
  109. Zweig YF (2010) Light concentrator, redirector and distributor. PCT Patent Application WO2010/134069 (25 November 2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Graziella Chini Zittelli
    • 1
  • Liliana Rodolfi
    • 2
  • Niccoló Bassi
    • 3
  • Natascia Biondi
    • 2
  • Mario R. Tredici
    • 2
  1. 1.Istituto per lo Studio degli EcosistemiCNRSesto FiorentinoItaly
  2. 2.Dipartimento di Biotecnologie AgrarieUniversità degli Studi di FirenzeFlorenceItaly
  3. 3.Fotosintetica & Microbiologia S.r.l.FlorenceItaly

Personalised recommendations